簡易檢索 / 詳目顯示

研究生: 李仰淇
Yang-Chi Li
論文名稱: IEEE 802.11p/1609網路之群組式控制頻道頻寬保留機制
A Group Bandwidth Reservation Scheme for Control Channel in IEEE 802.11p/1609 Networks
指導教授: 賴源正
Yuan-Cheng Lai
口試委員: 黎碧煌
Bih-Hwang Lee
周立德
Li-Der Chou,
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理系
Department of Information Management
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 36
中文關鍵詞: WAVE802.11pMAC
外文關鍵詞: WAVE, 802.11p, MAC
相關次數: 點閱:189下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • IEEE 802.11p/1609標準將頻率分割為一個控制頻道(CCH)及六個服務頻道(SCH)。車機及路邊裝置等車載裝置可於CCH傳輸緊急及控制訊息,且於SCH傳輸服務應用訊息。許多學者提出頻道存取機制以改善CCH頻寬效能。這些機制採用競爭方式來取得頻寬使得CCH遭遇嚴重的封包碰撞,或消耗過多的頻寬負載來取得CCH頻寬,進而降低CCH的產出。因此,本篇論文提出群組式保留之媒體存取控制 (Group Reservation MAC, GRMAC) 協定,以群組之頻寬保留機制,讓車載裝置可於SCH中保留CCH頻寬,以減少CCH中封包發生碰撞的次數,並且將頻寬排程機制由CCH移轉到SCH以減輕CCH執行頻寬排程的負擔,進而提升CCH頻寬效能。模擬結果顯示,在高負載的情況下,GRMAC之有效吞吐量(goodput)優於IEEE 802.11p/1609機制約2倍。


    IEEE 802.11p/1609 standards divide the radio spectrum into one control channel (CCH) and six service channels (SCHs) for the emergent/management packet exchange and the service dissemination, respectively. In order to improve the goodput on CCH, many channel access schemes have been proposed. These schemes, however, suffer enormous collisions or consume large overhead on CCH, leading toward poor goodput. In this thesis, Group Reservation MAC (GRMAC) is proposed to minimize the collisions occurred on CCH and thus to increase the overall goodput of CCH. GRMAC lets the vehicles reserve the CCH bandwidth on SCHs in order to alleviate the collisions on CCH. Also GRMAC transfers the CCH bandwidth scheduling mechanism from CCH to SCHs for lightening the burden of CCH bandwidth resource. The simulation results under a heavy load indicate that GRMAC achieve 2 times the goodput achieved by conventional IEEE 802.11p/1609 mechanism.

    中文摘要 I Abstract II 誌謝 III Table of Contents V List of Figures VI List of Tables VII Chapter 1. Introduction 1 Chapter 2. Background 4 2.1 IEEE 802.11p/1609 Standards 4 2.2 Encountered Difficulties of CCH Channel Access 7 Chapter 3. Group Reservation MAC 9 3.1 GRMAC overview 10 3.2 GRMAC Structure & Definition 12 3.2.1 Bandwidth Reservation Notification 12 3.2.2 Reservation Group 13 3.2.3 Group Reservation Interval and Contention Interval 14 3.3 Vehicle’s Behavior in SCHI 17 3.4 Vehicle’s behavior in CCHI 19 3.5 An example for GRMAC 21 Chapter 4. Simulation and Evaluation 23 4.1 Simulation Environment 23 4.2 WSM Arrival Rate 26 4.3 Number of Vehicles 29 4.4 GRIwsm Upper Bound 32 Chapter 5. Conclusion and Future Work 33 References 34

    [1]IEEE 802.11p, " Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments," July 2010.
    [2]IEEE Std. 1609.1TM-2006, “IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE) – Resource Manager,” Oct. 2006.
    [3]IEEE Std. 1609.2TM-2006, “IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE) – Security Services for Applications and Management Messages,” July 2006.
    [4]IEEE Std. 1609.3TM-2006, “IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE) – Networking Services,” Apr. 2006.
    [5]IEEE Std. 1609.4TM-2006, “IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE) – Multi-channel Operation,” Nov. 2006.
    [6]N. Lu, X. Wang, P. Wang, P. Lai, and F. Liu, “A distributed reliable multi-channel MAC protocol for vehicular ad hoc networks,” in Proc. Intelligent Vehicles Symposium, 2009, pp. 1078-1082.
    [7]N. Lu, Y. Ji, F. Lin and X. Wang, “A dedicated multi-channel MAC protocol design for VANET with adaptive broadcasting,” in proc. Wireless Communications and Networking Conference, 2010, pp. 1-6.
    [8]F. Borgonovo, A. Capone, M. Cesana, and L. Fratta, “ADHOC MAC: new MAC architecture for ad hoc networks providing efficient and reliable point-to-point and broadcast services,” Journal of Wireless Networks, vol. 10, no. 4, 2004.
    [9]Y. Zang, L. Stibor, B. Walke, H. J. Reumerman and A. Barroso, “A novel MAC protocol for throughput sensitive applications in vehicular environments,” in Proc. Vehicular Technology Conference, 2007, pp. 2580-2584.
    [10]Q. Wang, S. Leng, H. Fu, Y. Zhang, and H. Weerasinghe, “An enhanced multi-channel MAC for the IEEE 1609.4 based vehicular ad hoc networks,” in Proc. INFOCOM IEEE Conference on Computer Communications Workshops, 2010, pp. 1-2.
    [11]R. Uzcategui and G. Acosta-Marum, “Wave: a tutorial,” Communications Magazine, vol. 47, no. 5, 2009, pp. 126-133.
    [12]H. Kai-Yun, K. Po-Chun, H. Chung-Hsien and L. Ching-Hai “Implementation of WAVE/DSRC devices for vehicular communications,” in Proc. Computer Communication Control and Automation, vol. 2, 2010, pp. 522-525.
    [13]Y. L. Morgan, “Notes on DSRC & WAVE standards suite: Its architecture, design, and characteristics,” Communications Surveys & Tutorials, vol. 10, no. 4, 2010, pp. 504-518.
    [14]Y. Toor, P. Muhlethaler and A. Laouiti, “Vehicle ad hoc networks: Applications and related technical issues,” Communications Surveys & Tutorials, vol.10, no. 3, 2008, pp.75-88.
    [15]L. Yue, B. Jun and Y. Ju, “Research on vehicular ad hoc networks,” in Proc. Control and Decision Conference, 2009, pp. 4430-4435.
    [16]D. Jiang and L. Delgrossi, “IEEE 802.11p: Towards an international standard for wireless access in vehicular environments,” in Proc. IEEE Vehicular Technology Conference, 2008, pp. 2036-2040
    [17]Martin Müller, “WLAN 802.11p measurements for vehicle to vehicle (V2V) DSRC Application Note,” In: Rohde & Schwarz, 2009. Available: http://www2.rohde-schwarz.com/en/service_and_support/Downloads/Application_Notes/?type=20&downid=5406

    無法下載圖示 全文公開日期 2016/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE