簡易檢索 / 詳目顯示

研究生: 張道弘
Tao-Hung Chang
論文名稱: 製備低介電多孔二氧化矽/聚乳酸複合膜
Fabrication of low-k porous SiO2/PLA hybrid film
指導教授: 施劭儒
Shao-ju Shih
口試委員: 梁元彰
Yuan-chang Liang
王丞浩
Chen-hao Wang
鄒年棣
Nien-ti Tsou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 96
中文關鍵詞: 低介電材料複合膜二氧化矽噴霧熱裂解法
外文關鍵詞: low-K materials, hybrid film, silica, spray pyrolysis
相關次數: 點閱:336下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

二氧化矽(silica)被廣泛利用在藥物載體、隔熱材料、低介電材料等多種應用上,此研究中將針對低介電材料應用進行探討。多孔二氧化矽擁有低成本、高熱穩定性、化學穩定性、及低介電常數等優勢,使其在低介電材料的領域中佔有一席之地。傳統製程上使用溶膠凝膠法(sol-gel method)合成多孔二氧化矽,此製程可以合成出形貌控制良好及純度高之玻璃粉末,但由於其製程所需時間較長為非連續製程,不利於在工業上大量的量產。
此研究中將利用噴霧熱裂解法(spray pyrolysis)合成多孔二氧化矽,噴霧熱裂解法擁有快速且連續性的製程,有利於工業上的量產。於此實驗中也成功利用四乙氧基矽烷(TEOS)及多種造孔劑(agar, PEG 600, and F127)作為前驅物於噴霧熱裂解系統合成出多孔二氧化矽。
經由噴霧熱裂解合成出多孔二氧化矽則利用X光繞射儀鑑定其相組成,利用場發射掃描式電子顯微鏡分析其表面結構,內部結構則是藉由場發射穿透式電子顯微鏡觀察,經由電阻電容及電桿量度儀測量其與PLA高分子混和而成之薄膜電容值,經由公式得其介電常數。

最後也將針對噴霧熱裂解系統藉由添加不同造孔劑所合成出之多孔二氧化矽顆粒形成機制進行探討。


Silica (SiO2) materials are widely used as drug carriers, thermal insulators, and low-k dielectric materials. Furthermore, porous SiO2 is one of the candidates for low-k dielectrics due to its superior properties of low cost, high thermal stability, high chemical resistance, and low dielectric constant. So far, the common method of fabricating the porous SiO2 is the sol-gel method; however, this method contains the drawbacks of discontinuous process and long process time deteriorate poteneial,
which is not suitable for mass production.
This study proposed the one-step and continuous method of spray pyrolysis (SP) to prepare porous SiO2 particles. The experimental results showed that the various porous structure of SiO2 particles were achieved by using the mixed precursor solutions of tetraethyl orthosilicate and various pore-forming agents (agar, PEG 600, and F127) for SP.
Moreover, the phase compositions were analyzed by X-ray diffraction, the surface morphologies and particle size distributions were characterized by scanning electron microscopy, and the geometry was observed by transmission electron microscopy.
Also, the SP formation mechanisms of porous silica particles using various pore-forming( agents agar, PEG 600, and F127 )were discussed.

摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 XI 表目錄 XVIII 第1章、 緒論 1 第2章、 文獻回顧 3 2.1 RC delay 3 2.2 低介電材料 7 2.2.1 Silsesquioxane (SSQ)-based materials 9 2.2.2 Silica based materials 10 2.2.3 Organic polymers 12 2.2.4 Inorganic-organic hybrid materials 15 2.3 聚乳酸(PLA)介紹 21 2.4 多孔型二氧化矽 23 2.4.1 多孔材料介紹 23 2.4.2 多孔二氧化矽之性質及應用 25 2.5 多孔二氧化矽常用製程 27 2.5.1 溶膠-凝膠法 27 2.5.2 噴霧熱裂解法 28 2.6 噴霧熱裂解法 34 2.6.1 顆粒成型機制 36 2.6.2 靜電沉積技術 37 第3章、 多孔型二氧化矽粒子製備 39 3.1 實驗藥品 39 3.2 實驗儀器設備 40 3.3 樣品製備之步驟 41 3.3.1 多孔二氧化矽玻璃之製備與收集 41 3.3.2 二氧化矽/聚乳酸複合膜製備 43 3.4 材料分析 47 3.4.1 X-光繞射儀(X-Ray diffractometer, XRD) 47 3.4.2 場發射掃描式電子顯微鏡(Field-emission scanning electron microscope, FE-SEM) 47 3.4.3 穿透式電子顯微鏡(Transmission electron microscope, TEM) 48 3.4.4 電阻電容及電桿量度儀(Precision LCR meter) 48 第4章、 實驗結果 49 4.1 多孔二氧化矽粉末分析-Agar treated 49 4.1.1 X光繞射分析 49 4.1.2 SiO2粉體 FESEM 表面形貌分析 51 4.1.3 SiO2粉體 TEM 內部結構分析 55 4.1.4 SiO2/PLA hybrid film介電常數 57 4.2 多孔二氧化矽粉末分析-PEG 600 treated 59 4.2.1 X光繞射分析 59 4.2.2 SiO2粉體 FESEM 表面形貌分析 60 4.2.3 SiO2粉體 TEM 內部結構分析 64 4.2.4 SiO2/PLA hybrid film介電常數 66 4.3 多孔二氧化矽粉末分析-F127 treated 68 4.3.1 X光繞射分析 68 4.3.2 SiO2粉體 FESEM 表面形貌分析 69 4.3.3 SiO2粉體 TEM 內部結構分析 73 4.3.4 SiO2/PLA hybrid film介電常數 75 第5章、 討論 77 5.1 二氧化矽之成型機制探討 77 5.1.1 Agar 77 5.1.2 PEG 600 80 5.1.3 F127 81 5.2 孔隙率與介電常數 84 第6章、 結論 89 第7章、 參考文獻 90

[1] R.H. Dennard, V. Rideout, E. Bassous, A. LeBlanc, Design of ion-implanted MOSFET's with very small physical dimensions, Solid-State Circuits, IEEE Journal of, 9 (1974) 256-268.
[2] M.T. Bohr, Interconnect scaling-the real limiter to high performance ULSI, International Electron Devices Meeting, Institute of Electrical and Electronic Engineers, INC (IEEE), 1995, pp. 241-244.
[3] S. Jeng, R. Havemann, M. Chang, Advanced Metallization for Devices and Circuits—Science Technology and Manufacturability, Proceedings of the Materials Research Society Symposium, 1994, pp. 4-8.
[4] RC Charging Circuit, Basic Electronics Tutorials, 2016.
[5] J. Rubinstein, P. Penfield Jr, M.A. Horowitz, Signal delay in RC tree networks, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 2 (1983) 202-211.
[6] M.R. Baklanov, K. Maex, Porous low dielectric constant materials for microelectronics, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 364 (2006) 201-215.
[7] R. Brückner, Properties and structure of vitreous silica. I, Journal of Non-crystalline Solids, 5 (1970) 123-175.
[8] T. Suni, K. Henttinen, I. Suni, J. Mäkinen, Effects of plasma activation on hydrophilic bonding of Si and SiO2, Journal of the Electrochemical Society, 149 (2002) G348-G351.
[9] D. Shamiryan, T. Abell, F. Iacopi, K. Maex, Low-k dielectric materials, Materials Today, 7 (2004) 34-39.
[10] R.H. Baney, M. Itoh, A. Sakakibara, T. Suzuki, Silsesquioxanes, Chemical Reviews, 95 (1995) 1409-1430.
[11] K. Maex, M. Baklanov, D. Shamiryan, S. Brongersma, Z. Yanovitskaya, Low dielectric constant materials for microelectronics, Journal of Applied Physics, 93 (2003) 8793-8841.
[12] E.T. Ogawa, J. Kim, G.S. Haase, H.C. Mogul, J.W. McPherson, Leakage, breakdown, and TDDB characteristics of porous low-k silica-based interconnect dielectrics, Reliability Physics Symposium Proceedings, 2003. 41st Annual. 2003 IEEE International, IEEE, 2003, pp. 166-172.
[13] Y.-H. Kim, M.S. Hwang, H.J. Kim, J.Y. Kim, Y. Lee, Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films, Journal of Applied Physics, 90 (2001) 3367-3370.
[14] K. Kim, D. Kwon, G. Nallapati, G. Lee, Characterization of low dielectric constant plasma enhanced chemical vapor deposition fluorinated silicon oxide films as intermetal dielectric materials, Journal of Vacuum Science and Technology A, 16 (1998) 1509-1513.
[15] H. Kudo, R. Shinohara, S. Takeishi, N. Awaji, M. Yamada, Densified SiOF film formation for preventing water absorption, Japanese Journal of Applied Physics, 35 (1996) 1583.
[16] T. Usami, K. Shimokawa, M. Yoshimaru, Low dielectric constant interlayer using fluorine-doped silicon oxide, Japanese Journal of Applied Physics, 33 (1994) 408.
[17] S.J. Martin, J.P. Godschalx, M.E. Mills, E.O. Shaffer, P.H. Townsend, Development of a Low‐Dielectric‐Constant Polymer for the Fabrication of Integrated Circuit Interconnect, Advanced Materials, 12 (2000) 1769-1778.
[18] E.T. Ryan, A.J. McKerrow, J. Leu, P.S. Ho, Materials issues and characterization of low-k dielectric materials, MRS Bulletin, 22 (1997) 49-54.
[19] N.P. Hacker, Organic and inorganic spin-on polymers for low-dielectric-constant applications, MRS Bulletin, 22 (1997) 33-38.
[20] J.O. Simpson, A.K. St.Clair, Fundamental insight on developing low dielectric constant polyimides, Thin Solid Films, 308–309 (1997) 480-485.
[21] G. Maier, Low dielectric constant polymers for microelectronics, Progress in Polymer Science, 26 (2001) 3-65.
[22] K.-H. Kim, Y.-G. Kim, Y. Kwon, Preparation and characterization of surface energy of BPDA-BAPP polyimide, Macromolecular Research, 17 (2009) 388-396.
[23] S.J. Lee, M.-C. Choi, S.S. Park, C.-S. Ha, Synthesis and characterization of hybrid films of polyimide and silica hollow spheres, Macromolecular Research, 19 (2011) 599-607.
[24] G. Ragosta, P. Musto, Polyimide/silica hybrids via the sol-gel route: High performance materials for the new technological challenges, Express Polymer Lett, 3 (2009) 428.
[25] S. Baskaran, J. Liu, K. Domansky, N. Kohler, X. Li, C. Coyle, G.E. Fryxell, S. Thevuthasan, R.E. Williford, Low dielectric constant mesoporous silica films through molecularly templated synthesis, Advanced Materials, 12 (2000) 291-294.
[26] C.-M. Yang, A.-t. Cho, F.-M. Pan, T. Tsai, K. Chao, Spin‐on Mesoporous Silica Films with Ultralow Dielectric Constants, Ordered Pore Structures, and Hydrophobic Surfaces, Advanced Materials, 13 (2001) 1099-1102.
[27] D. Zhao, P. Yang, N. Melosh, J. Feng, B.F. Chmelka, G.D. Stucky, Continuous mesoporous silica films with highly ordered large pore structures, Advanced Materials, 10 (1998) 1380-1385.
[28] W. Juan, Z. Changrui, F. Jian, The Development of Low Dielectric Constant Films, Progress in Chemistry-Beijing, 17 (2005) 1001.
[29] T. Lee, S.S. Park, Y. Jung, S. Han, D. Han, I. Kim, C.-S. Ha, Preparation and characterization of polyimide/mesoporous silica hybrid nanocomposites based on water-soluble poly (amic acid) ammonium salt, European Polymer Journal, 45 (2009) 19-29.
[30] K.M. Nampoothiri, N.R. Nair, R.P. John, An overview of the recent developments in polylactide (PLA) research, Bioresource Technology, 101 (2010) 8493-8501.
[31] E.T. Vink, K.R. Rabago, D.A. Glassner, P.R. Gruber, Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production, Polymer Degradation, and Stability, 80 (2003) 403-419.
[32] K. Ishizaki, S. Komarneni, M. Nanko, Porous Materials: Process technology and applications, Springer Science and Business Media2013.
[33] T. Nitta, Z. Terada, S. Hayakawa, Humidity‐Sensitive Electrical Conduction of MgCr2O4‐TiO2 Porous Ceramics, Journal of the American Ceramic Society, 63 (1980) 295-300.
[34] C. Cantalini, M. Post, D. Buso, M. Guglielmi, A. Martucci, Gas sensing properties of nanocrystalline NiO and Co3O4 in porous silica sol–gel films, Sensors and Actuators B: Chemical, 108 (2005) 184-192.
[35] A. Abdelghani, J. Chovelon, N. Jaffrezic-Renault, M. Lacroix, H. Gagnaire, C. Veillas, B. Berkova, M. Chomat, V. Matejec, Optical fibre sensor coated with porous silica layers for gas and chemical vapour detection, Sensors and Actuators B: Chemical, 44 (1997) 495-498.
[36] A.C. Patel, S. Li, C. Wang, W. Zhang, Y. Wei, Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications, Chemistry of Materials, 19 (2007) 1231-1238.
[37] J. Ge, Q. Zhang, T. Zhang, Y. Yin, Core–satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability, Angewandte Chemie, 120 (2008) 9056-9060.
[38] N.T. Phan, C.W. Jones, Highly accessible catalytic sites on recyclable organosilane-functionalized magnetic nanoparticles: An alternative to functionalized porous silica catalysts, Journal of Molecular Catalysis A: Chemical, 253 (2006) 123-131.
[39] M. Vallet-Regi, A. Ramila, R. Del Real, J. Pérez-Pariente, A new property of MCM-41: drug delivery system, Chemistry of Materials, 13 (2001) 308-311.
[40] C. Wu, J. Chang, Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application, Interface Focus, (2012) rsfs20110121.
[41] A. Doadrio, E. Sousa, J. Doadrio, J.P. Pariente, I. Izquierdo-Barba, M. Vallet-Regı, Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery, Journal of Controlled Release, 97 (2004) 125-132.
[42] D. Halamová, M. Badaničová, V. Zeleňák, T. Gondová, U. Vainio, Naproxen drug delivery using periodic mesoporous silica SBA-15, Applied Surface Science, 256 (2010) 6489-6494.
[43] C.W. Tanner, K.Z. Fung, A.V. Virkar, The effect of porous composite electrode structure on solid oxide fuel cell performance I. Theoretical analysis, Journal of The Electrochemical Society, 144 (1997) 21-30.
[44] J. Newman, W. Tiedemann, Porous‐electrode theory with battery applications, AIChE Journal, 21 (1975) 25-41.
[45] H.-J. Wu, J.-T. Fan, N. Du, Porous materials with thin interlayers for optimal thermal insulation, International Journal of Nonlinear Sciences and Numerical Simulation, 10 (2009) 291-300.
[46] P. De Rouffignac, Z. Li, R.G. Gordon, Sealing porous low-k dielectrics with silica, Electrochemical and Solid-State Letters, 7 (2004) G306-G308.
[47] U. Ciesla, F. Schüth, Ordered mesoporous materials, Microporous and Mesoporous Materials, 27 (1999) 131-149.
[48] J. Beck, J. Vartuli, W.J. Roth, M. Leonowicz, C. Kresge, K. Schmitt, C. Chu, D.H. Olson, E. Sheppard, A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of the American Chemical Society, 114 (1992) 10834-10843.
[49] C. Kresge, M. Leonowicz, W. Roth, J. Vartuli, J. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359 (1992) 710-712.
[50] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 279 (1998) 548-552.
[51] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, Journal of the American Chemical Society, 120 (1998) 6024-6036.
[52] S.T. Pantelides, W.A. Harrison, Electronic structure, spectra, and properties of 4: 2-coordinated materials. I. Crystalline and amorphous SiO2 and GeO2, Physical Review B, 13 (1976) 2667.
[53] R.W.G. Wyckoff, R.W. Wyckoff, Crystal structures, Interscience New York1960.
[54] Y.-G. Kwon, S.-Y. Choi, E.-S. Kang, S.-S. Baek, Ambient-dried silica aerogel doped with TiO2 powder for thermal insulation, Journal of Materials Science, 35 (2000) 6075-6079.
[55] J.A. McWilliams, Thermal insulation containing silica aerogel and alumina, US Patent 4,221,672, 1980.
[56] S. Zhang, Z. Chu, C. Yin, C. Zhang, G. Lin, Q. Li, Controllable drug release and simultaneously carrier decomposition of SiO2-drug composite nanoparticles, Journal of the American Chemical Society, 135 (2013) 5709-5716.
[57] Y. Zhu, T. Ikoma, N. Hanagata, S. Kaskel, Rattle‐type Fe3O4@ SiO2 hollow mesoporous spheres as carriers for drug delivery, Small, 6 (2010) 471-478.
[58] H.-X. Zhang, A.-M. Cao, J.-S. Hu, L.-J. Wan, S.-T. Lee, Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode, Analytical Chemistry, 78 (2006) 1967-1971.
[59] D. Sun, Y. Zhang, F. Wang, K. Wu, J. Chen, Y. Zhou, Electrochemical sensor for simultaneous detection of ascorbic acid, uric acid and xanthine based on the surface enhancement effect of mesoporous silica, Sensors and Actuators B: Chemical, 141 (2009) 641-645.
[60] L.M. Ellerby, C.R. Nishida, Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method, Science, 255 (1992) 1113.
[61] S. Sakka, Glasses and glass-ceramics from gels, Journal of Non-Crystalline Solids, 73 (1985) 651-660.
[62] R. Twite, G. Bierwagen, Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys, Progress in Organic Coatings, 33 (1998) 91-100.
[63] J. Wang, W. Xiao, J. Wang, J. Lu, J. Yang, Hollow mesoporous silica spheres synthesized with cationic and anionic mixed surfactant as templates, Materials Letters, 142 (2015) 269-272.
[64] B.G. Trewyn, I.I. Slowing, S. Giri, H.-T. Chen, V.S.-Y. Lin, Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release, Accounts of Chemical Research, 40 (2007) 846-853.
[65] Y. Wei, J. Xu, H. Dong, J.H. Dong, K. Qiu, S.A. Jansen-Varnum, Preparation and physisorption characterization of D-glucose-templated mesoporous silica sol-gel materials, Chemistry of Materials, 11 (1999) 2023-2029.
[66] D.S. Jung, S.B. Park, Y.C. Kang, Design of particles by spray pyrolysis and recent progress in its application, Korean Journal of Chemical Engineering, 27 (2010) 1621-1645.
[67] H. Fan, F. Van Swol, Y. Lu, C.J. Brinker, Multiphased assembly of nanoporous silica particles, Journal of Non-Crystalline Solids, 285 (2001) 71-78.
[68] H.R. Jang, H.-J. Oh, J.-H. Kim, K.Y. Jung, Synthesis of mesoporous spherical silica via spray pyrolysis: pore size control and evaluation of performance in paclitaxel pre-purification, Microporous and Mesoporous Materials, 165 (2013) 219-227.
[69] G.L. Messing, S.C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, Journal of the American Ceramic Society, 76 (1993) 2707-2726.
[70] K. Okuyama, Preparation of micro-controlled particles usingaerosol process, Journal of Aerosol Science, 22 (1991) S7-S10.
[71] C.F. Clement, I.J. Ford, Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts, Atmospheric Environment, 33 (1999) 489-499.
[72] C. Chen, T. Tseng, S. Tsai, C.-K. Lin, H. Lin, Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis, Ceramics International, 34 (2008) 409-416.
[73] H.F. Kraemer, H. Johnstone, Collection of aerosol particles in presence of electrostatic fields, Industrial and Engineering Chemistry, 47 (1955) 2426-2434.
[74] S. Liu, P.K. Dasgupta, Automated system for chemical analysis of airborne particles based on corona-free electrostatic collection, Analytical Chemistry, 68 (1996) 3638-3644.
[75] Y. Rao, S. Ogitani, P. Kohl, C. Wong, Novel polymer–ceramic nanocomposite based on high dielectric constant epoxy formula for embedded capacitor application, Journal of Applied Polymer Science, 83 (2002) 1084-1090.

QR CODE