簡易檢索 / 詳目顯示

研究生: 陳泓廷
Hung-Ting Chen
論文名稱: 以KANO二維品質模式探討智慧綠建築設計策略
KANO two-dimensional quality model to investigate Intelligent green building design strategies
指導教授: 阮怡凱
Yi-Kai Juan
口試委員: 彭雲宏
none
施宣光
none
黃國倉
none
學位類別: 碩士
Master
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 99
中文關鍵詞: 智慧綠建築Kano二維品質設計策略策略評估
外文關鍵詞: intelligent green building, KANO two-dimensional quality, design strategies, strategy assessment
相關次數: 點閱:277下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了緩和都市建築環境日益惡化的問題,近年來各國政府皆已投入極大的資源進行永續意識的提升,並將智慧化與綠色永續發展納入國家產業的重大發展政策,將綠建築結合智慧化設備,即為智慧綠建築。然而現今智慧綠建築與其衍生的設計策略,是否確實能在品質與效益間滿足使用者需求與認知,實為未來政府極力推動智慧綠建築前值得研究的課題。

    本研究擬(1)蒐集彙整國內外相關智慧綠建築設計策略文獻及現有相關建築設備技術,並採用(2)Kano二維品質模式,將問項需求歸類成五大類Kano品質要素,包括:魅力要素、一維要素、當然要素、無差別要素及反轉要素,透過問卷調查形式針對一般使用者與建築專業人士分析統計,並將使用者經驗感知、需求體驗與滿意度量化成品質改善指標,並(3)計算一般與建築專業人士各項品質要素增加滿意與減少不滿意程度,藉以提出未來智慧化綠建築的設計策略。本研究獲得以下結論:

    一、 本研究32個問項要素中,一般民眾類別有18項為魅力要素、4項為當然要素、10項為無差別要素;建築專業人士有17項為魅力要素與15項為無差別要素。
    二、 建議針對一般民眾類別中智能風扇空調並用循環系統、自動調濕系統、智能VRV分區變頻空調系統;建築專業人士中智慧化屋頂綠化系統與智能防火區劃引導系統進行改善執行,將會得到使用者滿意。

    智慧綠建築,以綠建築為基礎導入智慧型高科技技術之應用,提升建築整體效能為目的。詢問建築師或業主項目之主觀機率產生意願期望值,透過品質滿意指標與期望值進行量化計算產生品質指標排序,提供未來建築設計師對智慧綠建築技術與設計策略上實施優先順序。


    In order to ameliorate the problem of deteriorating urban building environment, governments in most parts of the world have been investing plenty of various resources to promote the awareness of sustainability and to incorporate the concept of getting intelligent and going green in the way of urban planning when they make significant development policies. Notwithstanding, a subject present itself: do the intelligent green building and the design strategies which carry it into reality truly reflect its quality and effectiveness in regard to the building user’s demand and satisfaction. Such a subject is what may dictate the direction of government policy and thus is worthy of serious probing.

    This study sets the following three things as its focus:(1)Researching and putting together as much literature as possible, published domestically as well as abroad, in the area of intelligent green building design strategies and existing related construction equipment and technology. (2)Employing the KANO two-dimensional quality model, which categorizes KANO quality elements into five sub-groups: attractiveness element, one-dimensional element, must-be element, indifferent element, and reverse element. A statistical analysis is done through questionnaires distributed to regular users and users with an architecture-based education. In addition, a quality improvement index is obtained as a result of quantifying the users’ experience, perception and satisfaction. (3)Delving into distinctions in terms of satisfaction level and demand level on the contrasting parts of ordinary users and users with and architecture-based education, in the hope of bringing forward fresh strategies for future intelligent green building designing.

    The findings of this study are stated below: (1)Of the thirty-two questions asked, regular users claim eighteen as attractive element, four as must-be factor and ten as indifferent element. By contrast, users with an education-based education state seventeen as attractiveness element and fifteen as indifferent element.(2)Greater user-satisfaction on the part of regular users could be attained if improvement could be made in the performance of the smart fan with the air-conditioning and circulation system, the automatic humidity system and the intelligent VRV inverter air-conditioning partition system. As regards professionals in the trade of architecture, higher level of satisfaction could be generated when improvement is made in the areas of the green roof system and the intelligent fire protection division system.

    Intelligent green building, its predecessor being green building, is currently continuing to employing newly-developed technology and sets as its goal the ultimate enhancement of a construction’s overall function and performance. By putting questions to architecture professionals and regular building users and by calculating the subjective probability, an expectancy value is derived. Furthermore, through quality indicators and satisfaction expectancy, a quantified preference for various quality levels is defined, which is considered significant for architects in the future when they work on innovating their intelligent green building know-how and the design strategies.

    中文摘要 I 英文摘要 III 目錄 V 圖目錄 VII 表目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 5 1.3 研究範圍與限制 6 1.4 研究流程 7 第二章 文獻回顧 8 2.1 綠建築與智慧建築 8 2.2 智慧綠建築 11 2.3 Kano二維品質理論 16 2.4 Kano品質屬性與消費者滿意係數(CS) 21 第三章 研究設計與方法 23 3.1 研究架構 24 3.2 問卷設計與構面 25 3.3 Kano操作方法 30 第四章 研究成果 32 4.1 分析與結果 32 4.2 Kano品質改善指標 44 4.3 一般與建築專業人士指標係數 58 第五章 研究結論與建議 61 5.1 結論 62 5.2 建議 72 第六章 附錄 77

    1. Kano, N., Seraku, N., Takahashi, F. & Tsuji, S. (1984). Attractive Quality and Must-Be Quality. The Journal of Japanese Society for Quality Control, April,42.
    2. Matzler, K., & Hinterhuber, H.H., (1998). How to make product development projects more successful by integrating Kano's. Technovation, 18(1), 25-38.
    3. Yang, J., Peng, H. (2001). Decision support to the application of intelligent building technologies. Renewable Energy, 22(1-3), 67-77.
    4. Walmsley, A. (2006). Greenways: multiplying and diversifying in the 21st century. Landscape and Urban Planning, 76(1-4), 252-290.
    5. Lin, W.B. (2007). The exploration of customer satisfaction model from a comprehensive perspective. Expert Systems with Applications, 33(1), 110-121.
    6. Kim, H.S., & Roschke, P.N. (2007). GA-fuzzy control of smart base isolated benchmark building using supervisory control technique. Advances in Engineering Software, 38(7), 453-465.
    7. Li, Y., Tang, J., Luo, X., & Xu,J.(2008). An integrated method of rough set, Kano’s model and AHP for rating customer requirements’ final importance. Expert Systems with Applications, (36)3, 7045-7053.
    8. Peine, A. (2008). Technological paradigms and complex technical systems—The case of Smart Homes. Research Policy, 37(3), 508-529.
    9. Jiefang Zhu., Michael Zach. (2009). Nanostructured materials for photocatalytic hydrogen production. Current Opinion in Colloid & Interface Science, 14(4), 260-269.
    10. Xu, Q., Jiao, R.J., Xi, Y., Helander, H.,& Khalid, H.M. (2009). An analytical Kano model for customer need analysis. Design Studies, 30(1), 87-110.
    11. Andrews, C.J., & Uta Krogmann. (2009). Explaining the adoption of energy-efficient technologies in U.S. commercial buildings. Energy and Buildings, 41(3), 287-294.
    12. Partzsch, L. (2009). Smart regulation for water innovation – the case of decentralized rainwater technology. Journal of Cleaner Production, 17(11), 985-991.
    13. Jiefang Zhu, Michael Zach. (2009). Nanostructured materials for photocatalytic hydrogen production. Current Opinion in Colloid & Interface Science, 14(4), 260-269.
    14. Partzsch, L. (2009). Smart regulation for water innovation – the case of decentralized rainwater technology. Journal of Cleaner Production, 17(11), 985-991.
    15. Henrik C.J., Linderoth. (2010). Understanding adoption and use of BIM as the creation of actor networks. Automation in Construction, 19(1), 66-72.
    16. Henrik C.J. Linderoth. (2010). Understanding adoption and use of BIM as the creation of actor networks. Automation in Construction, 19(1), 66-72.
    17. Llinares, C., Page, A.F. (2011). Kano’s model in Kansei Engineering to evaluate subjective real estate consumer preferences. International Journal of Industrial Ergonomics, 41(3), 233-246.
    18. Arayici, Y., Coates, P., Koskela, L., Kagioglou, M., Usher, C.,& O'Reilly, K.(2011). Technology adoption in the BIM implementation for lean architectural practice. Automation in Construction, 20(2), 189-195.
    19. 陳仲佑,住居建築多邊界可變性外牆系統研究,國立台灣科技大學工程技術研究所碩士論文,2000。
    20. 劉憲明,主觀機率引出法抉擇之研究,國防管理學院資源管理研究所碩士論文,2001。
    21. 林正昌,智慧型辦公建築室內環境控制現況調查研究,中國文化大學建築及都市計劃研究所碩士論文,2002。
    22. 李鍵灝,抗污塗層對光電板發電能力之影響,國立臺灣科技大學建工程系碩士論文,2008。
    23. 徐賢才,綠建築規劃模式之探討,國立台北科技大學商業自動化與管理研究所碩士論文,2008
    24. 陳盈璋,智慧型遮陽板及室內人工光源控制系統,大葉大學機電自動化研究所碩士論文,2008。
    25. 鍾武翔,無線射頻辨識(RFID)於建築物門牌資訊系統建置應用之研究,國立臺灣科技大學營建工程系碩士論文,2008。
    26. 陳昭茹,綠建築法令與實務操作介面之研究,國立台北科技大學建築與都市設計研究所碩士論文,2010
    27. 李士畦,建築雨水利用可靠度類神經網路預測模式研究,國立成功大學建築學系碩博士論文,2010。
    28. 李宜謙,建築資訊模型(BIM)應用於物業管理之研究—以設備維護管理為例,國立台北科技大學木與防災研究所碩士論文,2010。
    29. 顏子承,因應環境變遷創新建築設計模式之實證探討,國立台灣科技大學建築研究所碩士論文,2011。
    30. 林玉貴,智慧化室內綠牆感知系統設計之探討,中華科技大學建築工程與環境設計研究所碩士論文,2011。
    31. 張文海,二十一世紀永續住宅性能發展趨勢之研究,國立臺灣科技大學企業管理系碩士論文,2011。
    32. 范國祐,開放式建築與結構資訊模型整合之研究-以MEGA House為例,國立臺灣科技大學營建工程系碩士論文,2011。
    33. 林敬哲,智慧建築節能量測與經濟效益評估-以MEGA House為例,國立臺灣科技大學營建工程系碩士論文,2011。
    34. 吳信宏,利用Kano二維模式於價值管理以產生顧客價值,價值管理專題論述,2002。
    35. 黃國平、許慶祥、連仁宗,評估智慧化大眾運輸系統-科技接受模型之應用,海峽兩岸智慧型運輸系統學術研討會,2006。
    36. 何明錦、徐虎嘯,臺灣綠建築政策與水資源應用實例內政部建築研究所,2007。
    37. 智慧綠建築推動方案,內政部建築研究所,2010。
    38. 溫琇玲,從智慧建築邁向智慧城市,中央研究院100年度節能專案教育訓練課程,2011。
    39. 溫琇玲,智慧建築解說與評估手冊,內政部建築研究所,2003。
    40. David Gissen,邁向二十一世紀的永續建築,木馬文化,2005。
    41. 林憲德,綠建築解說與評估手冊2007年更新版,內政部建築研究所,2007。
    42. 林憲德,綠建築84技術,詹氏書局,2010。
    43. 林憲德,亞洲觀點的綠色建築,詹氏書局,2011。
    44. 陳宗鵠,築綠 心次元健康好宅,詹氏書局,2011。
    45. Herzberg, F. (1959). The Motivation to Work. New York:John Wiley & Sons.
    46. 內政部建築研究所,http://www.abri.gov.tw/utcPageBox/CHIMAINHP.aspx?ddsPageID=CHIM。
    47. IBM,http://www.ibm.com/smarterplanet/us/en/。
    48. Johnson Controls,http://www.johnsoncontrols.com/publish/us/en.html。
    49. WIKIPEDIA KANO MODEL,http://en.wikipedia.org/wiki/Kano_model。

    QR CODE