研究生: |
謝照晟 Zhao-Cheng Xie |
---|---|
論文名稱: |
化學迴路燃燒程序應用於有機廢溶劑-丁酮處理之研究 Study on Chemical Looping Combustion Procedure of Organic Waste Solvent-Methyl Ethyl Ketone Treatment |
指導教授: |
曾堯宣
Yao-Hsuan Tseng |
口試委員: |
李豪業
Hao-Yeh Lee 郭俞麟 Yu-Lin Kuo 陳士勛 Shih-Hsun Chen |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 化學工程系 Department of Chemical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 化學迴路燃燒程序 、交聯式流體化床 、載氧體 、有機溶劑廢液 |
外文關鍵詞: | Chemical looping combustion, Interconnected fluidized bed, Oxygen carrier, Organic solvent |
相關次數: | 點閱:449 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今隨著電子資訊的發展,科技業逐漸成為我國產業之首,因此,生產使用的化學有機溶劑逐年增加,部份公司透過清運廠商高溫焚化,但此方式不僅會產生大量空污,且有高能耗之缺點,且廢溶劑處理成本逐年提高。化學迴路燃燒程序為一新穎的燃燒系統,具有無焰高效燃燒與易獲高濃度二氧化碳之優點,其反應器設計、流體化以及其與氣-固接觸時間,均會影響反應程度,載氧體為化學迴路燃燒的關鍵,天然鐵礦因具有環境友好和價格低廉特性而被廣泛關注。
本研究以巴西鐵礦為載氧體,以廢液丁酮為燃料,於交聯式流體化床進行化學迴路燃燒程序,此系統中,空氣反應器為快速流體化床,燃料反應器為鼓泡床,而載氧體作為兩反應器間運行之床料,在燃料反應器內提供氧,而在空氣反應器內重新獲得氧,同時連續偵測系統內溫度與壓力分佈、燃燒後尾氣(空氣反應器與燃料反應器)之組成,操作條件之研究包含三部份,第一部份為流化氣速(空氣反應器、封閉迴路),此為測試不同流化氣速對系統流體化程度之影響,作為日後操作之基礎,第二部份為系統溫度對尾氣中碳轉化效率與二氧化碳純度的影響,最後部份為燃料進料量,以測試此系統之極限處理量。實驗結果顯示,當空氣反應器風量為7.5 L/min、封閉迴路風量為4 L/min、溫度為750oC、燃料反應器風量4 L/min,其能有效處理2 mL/min之廢液丁酮,在反應器出口氣體組成為83%二氧化碳、10%甲烷、6%乙烯、1%一氧化碳,此可定為商轉模廠之建置依據。
The tech industry becomes the major industry in Taiwan gradually due to the increase in the demand of computer, communication, and consumer electronics. The amount of organic solvent used for manufacture thus is increased sharply. Some companies assign waste treatment companies to incinerate these waste solvent, resulting in plenty of air pollution and energy consumption. The chemical looping combustion (CLC) is a novel combustion process with flameless, high combustion efficiency, and direct separation of carbon dioxide. The operation conditions, such as reactor design, degree of fluidization, and contact time between gas and solid, will affect the reaction rate. The oxygen carrier plays the important role in CLC, and the natural iron ore is widely used due to its environmentally friendliness and cheap cost.
In this study, the Brazilian iron ore was used as the oxygen carrier, and the waste solvent of methyl ethyl ketone was used as the fuel. The experiment was carried out in interconnected fluidized bed. In this system, the air reactor and the fuel reactor were fast fluidized bed and bubbling bed, respectively. The oxygen carrier was transferred between the fuel reactor and the air reactor,
which provided oxygen in the fuel reactor and regained oxygen in the air reactor. The temperature, the pressure distribution and the composition of the exhaust gas (air reactor and fuel reactor) in the system were continuously monitored. Three parts of operating conditions were investigated in this work. In the first part, the effect of gas flow rate of air reactor and loop seal on fluidization phenomenon was analyzed to establish the basic operation parameters. The second part was the system temperature, which affected the carbon conversion and purity of CO2. In the last part, the maximum treatment capacity for waste solvent of this system was evaluated. The experimental results indicated that the optimal parameters were obtained at 7.5 L/min of air flow for air reactor, 4 L/min of N2 for loop seal, 750oC of the system. The maximum feed rate of solvent was 2 mL/min in this system. The composition of the flue gas was 83% carbon dioxide, 10% methane, 6% ethylene, 1% carbon monoxide. The research results can be used as a reference for the operation parameters of pilot.
[1] 行政院環境保護署,事業廢棄物申報及管理資訊系統,(2016)。檢自https://waste.epa.gov.tw/prog/IndexFrame.asp?Func=7
[2] M. Gupta, I. Coyle and K. Thambimuthu, “CO2 Capture Technologies and opportunities in Canada: Strawman Document for CO2 capture and storage (CC&S) Technology Roadmap”, 1st Canadian CC&S Technology Roadmap Workshop, Vol. 18, pp. 19, Canada (Sept. 2003).
[3] M. Ishida and H. Jin, “A Novel Chemical-Looping Combustor without NOx Formation”, Ind. Eng. Chem. Res., Vol. 35, pp. 2469-2472 (1996).
[4] T. Mattisson and A. Lyngfelt, “Applications of Chemical-Looping Combustion with Capture of CO2”, Second Nordic Minisymposium on Carbon Dioxide Capture and Storage, Göteborg, Sweden (Oct. 2001).
[5] 郭修伯、黃安婗,你是風兒我是沙─流體化床,科學發展月刊,第513 期,10-15,(2015)。
[6] R. Cocco, S. B. Reddy Karri and T. Knowlton, “Introduction to Fluidization”, Chem. Eng. Prog., Vol. 110, pp. 21-29 (2014).
[7] D. Geldart, “Types of gas fluidization”, Powder Technol., Vol. 7, pp. 285-292 (1973).
[8] T. Mattisson and A. Lyngfelt, “Capture of CO2 using chemical-looping combustion”, Scandinavian-Nordic Section of the Combustion Institute, Göteborg, Sweden (Apr. 2001).
[9] H. A. Alalwan, S. E. Mason, D. M. Cwiertny, V. H. Grassian, H. A. Alalwan, D. M. Cwiertny and V. H. Grassian, “Co3O4 nanoparticles as oxygen carriers for chemical looping combustion: A materials characterization approach to understanding oxygen carrier performance”, Chem. Eng. J., Vol. 319, pp. 279-287 (2017).
[10] K. Wang, Q. Yu, Q. Qin and W. Duan, “Feasibility of a Co Oxygen Carrier for Chemical Looping Air Separation: Thermodynamics and Kinetics”, Chem. Eng. Technol., Vol. 37, pp. 1500-1506 (2014).
[11] C. Fu and P. S. Grant, “Toward Low-Cost Grid Scale Energy Storage: Supercapacitors Based on Up-Cycled Industrial Mill Scale Waste”, ACS Sustain. Chem. Eng., Vol. 3, pp. 2831-2838 (2015).
[12] J. Adánez, L. F. de Diego, F. García-Labiano, P. Gayán, A. Abad and J. M. Palacios, “Selection of Oxygen Carriers for Chemical-Looping Combustion”, Energ. Fuel., Vol. 18, pp. 371-377 (2004).
[13] S. Jiang, L. Shen, X. Niu, H. Ge and H. Gu, “Chemical Looping Co-combustion of Sewage Sludge and Zhundong Coal with Natural Hematite as the Oxygen Carrier”, Energ. Fuel., Vol. 30, pp. 1720-1729 (2016).
[14] X. Niu, L. Shen, S. Jiang, H. Gu and J. Xiao, “Combustion performance of sewage sludge in chemical looping combustion with bimetallic Cu–Fe oxygen carrier”, Chem. Eng. J., Vol. 294, pp. 185-192 (2016).
[15] W. Kaminsky, M. Predel and A. Sadiki, “Feedstock recycling of polymers by pyrolysis in a fluidised bed”, Polym. Degrad. Stab., Vol. 85, pp. 1045-1050 (2004).
[16] K. Smolders and J. Baeyens, “Thermal degradation of PMMA in fluidised beds”, Waste Manag., Vol. 24, pp. 849-857 (2004).
[17] D. Achilias, “Chemical Recycling of Polymers. The Case of Poly(methyl methacrylate)”, Proceedings of the International Conference on Energy & Environmental Systems, Chalkida, Greece (Mar. 2006).
[18] W. Kaminsky and J. Franck, “Monomer recovery by pyrolysis of poly(methyl methacrylate) (PMMA)”, J. Anal. Appl. Pyrol., Vol. 19, pp. 311-318 (1991).
[19] C. E. Waring and M. Spector, “The Mechanism of the Thermal Decomposition of Methyl Ethyl Ketone”, J. Am. Chem. Soc., Vol. 77, pp. 6453-6457 (1955).
[20] W. B. Guenther and W. D. Walters, “The Thermal Decomposition of Ketene 1”, J. Am. Chem. Soc., Vol. 81, pp. 1310-1315 (1959).
[21] P. G. Blake, K. J. Hole, “The Thermal Decomposition of Methyl Ketene”, J. Phys. Chem., Vol. 70, pp. 1464-1469 (1966).
[22] A. Hoteit, A. Forret, W. Pelletant, J. Roesler and T. Gauthier, “Chemical Looping Combustion with Different Types of Liquid Fuels”, Oil. Gas Sci. Technol., Vol. 66, pp. 193-199 (2011).
[23] P. Pimenidou, G. Rickett, V. Dupont and M. V. Twigg, “Chemical looping reforming of waste cooking oil in packed bed reactor”, Bioresour. Technol., Vol. 101, pp. 6389-6397 (2010).
[24] 張晏銓,交聯式流體化床操作優化參數及反應參數之研究,國立臺灣科技大學化學工程系碩士論文,(2017)。
[25] R. B. Bird, W. E. Stewart and E. N. Lightfoot, “Transport Phenomena 2nd”, JWS Inc. (2006).
[26] 陳明烽,以熱裂解法結合融合微滴電噴灑游離質譜法分析高分子聚合物,國立中山大學化學系碩士論文,(2002)。
[27] 吳翊康,化學迴路燃燒技術應用於處理高含水量溶劑之研究,國立臺灣科技大學化學工程系碩士論文,(2018)。