簡易檢索 / 詳目顯示

研究生: 金祖永
Tsu-Yung Jin
論文名稱: 鑭鈣鈷鐵氧化物作為SOFC陰極之氧還原反應觸媒作用
(La0.75Ca0.25)(CoxFe1-x)O3-δ as SOFC Cathode and its Catalytic Effect on Oxygen Reduction Reaction
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 許貫中
Kung-Chung Hsu
周振嘉
Chen-Chia Chou
黃鶯聲
Ying-Sheng Huang 
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 154
中文關鍵詞: 鑭鈣鈷鐵氧化物陰極固態氧化物電池氧還原反應鑭鏑鉬鎢氧化物
外文關鍵詞: Lanthanum calcium cobalt ferrites, Cathode, Solid oxide fuel cell, Oxygen reduction reaction, Lanthanum dysprosium tungsten molybdate
相關次數: 點閱:386下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討以鑭鈣鈷鐵氧化物(La0.75Ca0.25)(CoxFe1-x)O3 (x=0.1~0.9),作為匹配鑭鏑鉬鎢氧化物電解質(La1.8Dy0.2)(Mo2-xWx)O9 (x=0.4及1.0)之陰極氧還原反應電化學研究,以XRD、SEM分析材料結構,電化學交流阻抗分析圖譜儀及恆電位儀分析鑭鈣鈷鐵氧化物於鑭鏑鉬鎢氧化物電解質上之氧還原反應催化活性。
由XRD分析結果顯示,陰極材料為斜方晶相之鈣鈦礦結構,無第二相存在,隨著鈷含量的增加結構對稱性增加,但摻雜銅的量為0.1、0.15 mole%時有少量第二相三氧化四銅存在。根據熱重與熱差分析之結果,顯示陰極材料並無一階相轉變發生,且陰極與電解質間似乎無固態反應生成第二相之現象發生,然而鉬在600 ℃~800 ℃間擴散至陰極之現象嚴重影響多孔結構與晶粒大小,其對氧還原反應催化作用之影響為一重要因素。
陰極粉末膏網印於電解質上,經燒結900 ℃、2小時後,顯微結構顯示陰極層為相當多孔之結構。以交流阻抗分析三極式半電池之結果顯示,(La0.75Ca0.25)(Co0.8Fe0.2)O3-δ陰極組成在700 ℃下ASR達到最低為11.45 Ω•cm2,摻雜銅0.05 mole%於鑭之位置證明可大幅降低氧還原反應所造成之阻抗,在700 ℃下ASR達到最低為5.56 Ω•cm2,800 ℃為0.39 Ω•cm2。
利用半電池交流阻抗(impedance)所量測到的RLF以及CorrView商用軟體進行回歸計算求得之交換電流密度,在(La0.75Ca0.25) (Co0.8Fe0.2)O3-δ之陰極組成,其交換電流密度800 ℃時高達43.12 mA/cm2,(La0.7Ca0.25Cu0.05)(Co0.8Fe0.2)O3-δ之陰極組成,其交換電流密度800 ℃時高達58.7 mA/cm2。


This master thesis investigates the structures and the electrocatalytic
properties of (La0.75Ca0.25)(CoxFe1-x)O3 (x=0.1 – 0.9) cathode interfaced to
the electrolyte of (La1.8Dy0.2)(Mo2-xWx)O9 (x=0.4 and 1.0). The
microstructures of (La0.75Ca0.25)(CoxFe1-x)O3 are investigated by X-ray
diffraction (XRD), scanning electron microscopy (SEM). The
electrocatalytic properties are focused on the oxygen reduction reaction
(ORR) using impedance spectroscopy and potentiodynamic measurement
on a half-cell setup.
Analysis of XRD patterns indicates that (La0.75-xCa0.25) (CoyFe1-y)O3
(x=0.0, 0.03, 0.05; y=0.1 – 0.9) belongs to the perovskite structure of
orthorhombic cell, but a small amount of secondary phase do exist at
x=0.10 and 0.15. Thermogravimetric and differential thermal analysis
points out little reaction between (La0.75Ca0.25) (CoxFe1-x)O3 and
(La1.8Dy0.2)(Mo1.6W0.4)O9 between 30 - 950°C. However the Mo diffusion
at 600-800°C significantly influences the porous structure of cathode and
its grain size, which could be a significantly factor in catalyzing oxygen
reduction reaction.
The minimum area specific resistance of ORR on
(La0.75Ca0.25)(Co0.8Fe0.2)O3 is estimated 11.45 Ωcm2 at the targeted
operation temperature 700°C using impedance spectroscopy. If copper is
doped on the A-site of perovskite, the area specific resistance can be
further reduced to 5.56 Ωcm2 at 700°C, 0.39 Ωcm2 at 800°C. The values
of resistance measured by impedance spectroscopy are converted into the
values of exchange current density, which are similar to those obtained by
IV
potentiodynamic measurement. The exchange current density of
(La0.75Ca0.25)(Co0.8Fe0.2)O3 is 43.12 mAcm-2 at 800°C, that of
(La0.7Ca0.25Cu0.05) (Co0.8Fe0.2)O3 is 58.7 mAcm-2 at 800°C.

目錄 中文摘要...............................................Ⅰ 英文摘要...............................................Ⅲ 誌謝....................................................V 目錄..................................................VII 圖目錄................................................XII 表目錄..............................................XVIII 第一章 緒論............................................1 1.1 前言 ...............................................1 第二章 文獻回顧與理論基礎..............................2 2.1 燃料電池簡介.......................................2 2.2 固態氧化物燃料電池(Solid Oxide Fuel Cell)..........7 2.2.1 SOFC之電池元件...................................9 2.2.2 SOFC之運作原理..................................10 2.2.3 SOFC之現況......................................12 2.3 陰極材料結構與製備方法............................15 2.3.1 鈣鈦礦結構......................................15 2.3.2 溶膠-凝膠法(Sol-gel process)....................16 2.4 鑭鉬氧化物(La2Mo2O9)..............................19 2.4.1 鑭鏑鉬鎢氧化物電解質配合之陰極材料選擇..........22 2.5 陰極/電解質間之界面電化學.........................25 2.5.1 SOFC之極化現象..................................26 2.5.2 陰極氧還原反應(ORR).............................28 2.6 電化學交流阻抗分析基本原理........................38 2.6.1 交流阻抗分析之等效電路元件......................42 2.6.3 等效電路模擬....................................48 2.7 交換電流密度......................................51 2.7.1 Butler-Volmer 方程式............................51 2.7.2 交換電流密度之計算方法..........................53 2-8 研究目的..........................................57 第三章 實驗方法及步驟.................................58 3.1 實驗藥品..........................................58 3.2 實驗流程..........................................61 3.3 鑭鏑鉬鎢氧化物的製備..............................62 3.3.1 粉末烘乾、配粉及混合程序........................62 3.3.2 煆燒(Calcination)...............................62 3.3.3 塊材成形(Forming)...............................63 3.3.4 塊材燒結(Sintering).............................63 3.4 鑭鈣銅鈷鐵氧化物的製備............................65 3.4.1 前驅物配製......................................65 3.4.2 煆燒(Calcination)...............................65 3.4.3 粉末膏製作(Paste preparation)...................66 3-5 材料與電化學觸媒特性分析試片製作..................68 3.5.1 X光繞射分析之試片...............................68 3.5.2 場發掃描式電子顯微鏡微結構觀察分析之試片........68 3.5.3 熱重及熱差分析儀之粉末製備......................69 3.5.4 陰極(LCaCuCoF)/電解質(LDMW)之半電池試片.........69 3.6 材料特性分析......................................72 3.6.1 X光繞射分析.....................................72 3.6.2 密度量測........................................72 3.6.3 掃描式電鏡於截面及表面微觀分析..................73 3.6.4 EDS元素分析.....................................73 3.6.5 熱重及熱差分析儀(SDT)之量測.....................73 3.6.6 LCaCuCoF / LDMW之半電池交流阻抗量測.............74 3.6.7 LCaCuCoF / LDMW之DC極化曲線量測.................75 3.6.8 活化能(Activation energy)計算...................76 第四章 結果與討論.....................................77 4.1 XRD繞射分析.......................................78 4.1.1 孔隙度估算......................................85 4-2 熱重與熱差分析(TG/DTA)............................86 4-3 燒結溫度對於ORR阻抗之影響.........................88 4.3.1 顯微結構與元素分析..............................89 4.3.2 電化學交流阻抗分析..............................96 4.4 不同鈷含量對於ORR阻抗之影響......................104 4.4.1 顯微結構分析...................................104 4.4.2 電化學交流阻抗分析.............................104 4.5 煆燒溫度對於ORR阻抗之影響........................109 4.5.1 XRD繞射分析....................................109 4.5.2 顯微結構分析...................................111 4.5.3 電化學交流阻抗分析.............................113 4.6 DC bias對於ORR阻抗之影響.........................116 4.7 不同電解質對於ORR阻抗之影響......................120 4.7.1 顯微結構與元素分析.............................120 4.7.2 電化學交流阻抗分析.............................125 4.8 不同鈣含量對於ORR阻抗之影響......................128 4.8.1 XRD繞射分析....................................128 4.8.2 顯微結構與交流阻抗分析.........................129 4.9 摻雜銅對於ORR阻抗之影響..........................132 4.9.1 XRD繞射分析....................................132 4.9.2 顯微結構分析...................................133 4.9.3 交流阻抗分析...................................135 4-10 交換電流密度....................................137 第五章 結論.........................................141 參考文獻..............................................144 附錄A.................................................151 附錄B.................................................152 附錄C.................................................153

1.黃鎮江 “燃料電池” 全華科技圖書股份有限公司出版 (2005).
2.衣寶廉 “燃料電池-原理與應用” 五南圖書出版股份有限公司 (2005).
3.Haruhiko Adachi, Tokyo Gas Co. representative, Development of Fuel Cell in Tokyo Gas, 2005, speech at National Taiwan Univ Sci &Tech.
4.K. Huang, R. S. Tichy, and J. B. Goodenough, J. Am. Ceram. Soc., 81 [10], 2565 (1998).
5.K. Huang, R. S. Tichy, and J. B. Goodenough, J. Am. Ceram. Soc., 81 [10], 2576 (1998).
6.K. Huang, R. S. Tichy, and J. B. Goodenough, J. Am. Ceram. Soc., 81 [10], 2581 (1998).
7.K. Huang, M. Feng, and J. B. Goodenough, J. Electrochem. Soc., 144, 3620 (1997).
8.M. Feng, J. B. Goodenough, K. Huang, and C. Milliken, J. Power Sources, 63, 47 (1996).
9.J. McEvoy, Solid State Ionics, 132, 159 (2000).
10.洪明豪 “鑭鈣鐵氧化物作為固態氧化物燃料電池陰極之相關性質” 碩士學位論文, 國立台灣科技大學(2006).
11.P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant, Nature, 404, 856 (2000).
12.D. S. Tsai, M. J. Hsieh, J. C. Tseng, H. Y. Lee, J. Euro. Ceram. Soc., 25 [4], 481 (2005).
13.S. Georges, F. Goutenoire, O. Bohnke, M. C. Steil, S. J. Skinner, H. D. Wiemhofer, P. Lacorre, J. New Materials for Electrochemical Systems, 7, 51 (2004).
14.S. Georges, S. J. Skinner, P. Lacorre, M. C. Steil, Dalton Trans., 3101 (2004).
15.A. Tarancon, T. Norby, G. Dezanneau, A. Morata, F. Peiro, J. R. Morante, Electrochem. Solid-State Lett., 7, A373 (2004).
16.C. Tealdi, G. Chiodelli, L. Malavasi, G. Flor, J. Mater. Chem., 14, 3553 (2004).
17.G. G. Zhang, Q. F. Fang, X. P. Wang, Z. G. Yi, Phys. Stat. Sol., 199, 329 (2003).
18.S. Georges, F. Goutenoire, F. Altorfer, D. Sheptyakov, F. Fauth, E. Suard, P. Lacorre, Solid State Ionics, 161, 231 (2003).
19.S. Georges, F. Goutenoire, Y. Laligant, Ph. Lacorre, J. Mater. Chem. 13, 421, 2317 (2003).
20.Z. G. Yi, Q. F. Fang, X. P. Wang, G. G. Zhang, Solid State Ionics, 160, 117 (2003).
21.X. P. Wang, Q. F. Fang, Phys. Rev. B, 65, 064304-1(2002).
22.X. P. Wang, Q. F. Fang, Z. S. Li, G. G. Zhang, Z. G. Yi, Appl. Phys. Lett., 81, 3434 (2002).
23.X. P. Wang, Q. F. Fang, Solid State Ionics, 146, 185 (2002).
24.F. Goutenoire, O. Isnard, E. Suard, O. Bohnke, Y. Laligant, R. Retoux, and P. Lacorre, J. Mater. Chem., 11, 119 (2001).
25.X. P. Wang, Q. F. Fang, J. Phys. Condens. Matter, 13, 1641 (2001).
26.P. Lacorre, Solid State Ionics, 2, 755 (2000).
27.P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant, Nature, 404, 856 (2000).
28.F. Goutenoire, O. Isnard, R. Retoux, P. Lacorre, Chem. Mater., 12, 2575 (2000).
29.F. Goutenoire, E. Suard, R. Retoux and P. Lacorre, J. Solid State Chem., 142, 228 (1999).
30.P. Lacorre and R. Retoux, J. Solid State Chem., 132, 443 (1997).
31.P. Lacorre, Solid State Ionics, 2, 755 (2000).
32.P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant, Nature, 404, 856 (2000).
33.F. Goutenoire, O. Isnard, R. Retoux, P. Lacorre, Chem. Mater., 12, 2575 (2000).
34.Phase Diagrams for Ceramists, Vol III, The American Ceramic Society, Fig.4423 (1975).
35.F. Shi, J. Meng and Y. Ren, Solid State Commun., 95, 745 (1995).
36.A. Manthiram and J. Gopalakrishnan, J. Less-Common Met., 68, 167 (1979).
37.Tsu-Yung Jin, M.V. Madhava Rao, Chia-Liang Cheng, Dah-Shyang Tsai ,Ming-Hao Hung, Solid State Ionics, 178, 367 (2007).
38.A. Mai, V. A. C. Haanappel, S. Uhlenbruck, F. Tietz, and D. Stover, Solid State Ionics, 176, 1341 (2005).
39.P. Ciambelli, S. Cimino, L. Lisi, M. Faticanti, G. Minelli, I. Pettiti, and P. Porta, Appl. Catal. B, 33, 193 (2001).
40.L. B. Kong and Y. S. Sheng, Sensors and Actuactors B, 30, 217 (1996).
41.H. Taguchi, Y. Masunaga, K. Hirota, and O. Yamaguchi, Mater. Res. Bull., 40, 773 (2005).
42.D. Kuscer, M. Hrovat, J. Holc, S. Bernik, and D. Kolar, J. Power Sources, 61, 161 (1996).
43.M. D. Anderson, J. W. Stevenson, and S. P. Simner, J. Power Sources, 129, 188 (2004).
44.S. P. Simner, J. P. Shelton, M. D. Anderson, and J. W. Stevenson, Solid State Ionics, 161, 11 (2003).
45.E. V. Tsipis, M. V. Patrakeev, V. V. Kharton, A. A. Yaremchenko, G. C. Mather, A. L. Shaula, I. A. Leonidov, V. L. Kozhevnikov, and J. R. Frade, Solid State Sci., 7, 355 (2005).
46.E. V. Bongio, H. Black, F. C. Raszewski, D. Edwards, C. J. McConville, and V. R. W. Amarakoon, J. Electroceramics, 14, 193 (2005).
47.G. Coffey, J. Hardy, O. Marina, L. Pederson, P. Rieke, and E. Thomsen, Solid State Ionics, 175, 73 (2004).
48.R. Chiba, F. Yoshimura, and Y. Sakurai, Solid State Ionics, 124, 281 (1999).
49.J. W. Stevenson, T. R. Armstrong, R. D. Carneim, L. R. Pederson, and W. J. Weber, J. Electrochem. Soc., 143, 2722 (1996).
50.S. J. Skinner, Inter. J. Inorgan. Mater., 3, 113 (2001).
51.G. Zhu, X. Fang, C. Xia, and X. Liu, Ceram. Inter., 31, 115 (2005).
52.R. Chiba, F. Yoshimura, and Y. Sakurai, Solid State Ionics, 152, 575 (2002).
53.S. P. Simner, J. F. Bonnett, N. L. Canfield, K. D. Meinhardt, V. L. Sprenkle, and J. W. Stevenson, Electrochem. Solid-State Lett., 5, A173 (2002).
54.K. Huang, H. Y. Lee, and J. B. Goodenough, J. Electrochem. Soc., 145, 3220 (1998).
55.Gwenaël Corbel , Samih Mestiri, P. Lacorre, Solid State Sciences, 7, 1216 (2005).
56.M. Godickemeier, K. Sasaki, L. J. Gauckler, and I. Riess, Solid State Ionics, 86, 691 (1996).
57.L. B. Kong and Y. S. Sheng, Sensors and Actuactors B, 30, 217 (1996).
58.Jingbo Liu, Anne C. Co, Scott Paulson, Viola I. Birss, Solid State Ionics, 377, 177 (2006).
59.Anthony Petric, Peng Huang, Frank Tietzc, Solid State Ionics, 719 135 (2000).
60.Kenji Murata, Takehisa Fukui, Hiroya Abe, Makio Naito, Kiyoshi Nogi, J. Power Sources, 257, 145 (2005).
61.J. Larminie and A. Dicks, “Fuel Cell System Explained”, 1th Edition, JOHN WILEY & SONS, Inc. , England, (2000).
62.R. Jackson, “Transport in Porous Catalyst, Elsevier”, Amsterdam, (1977).
63.J. W. Kim, A.V. Virkar, K. Z. Fung, K. Mehta, and S.C. Singhal, J. Electrochem. Soc., 146, 69 (1999).
64.Ivers-Tiffée, A.Weber and H. Schichlein, “Handbook Fuel Cell”,Wiley (2003).
65.J. Velle, T. Norby, and P. Kofstad, Solid State Ionics, 47, 161 (1991).
66.Mitterdorfer and L. J. Gauckler, Solid State Ionics, 117, 203 (1999).
67.J. van Herle, A. J. McEvoy and K. Ravindranathan-Thampi, Electrochimica Acta, 41, 1447 (1996).
68.E. Siebert, A. Hammouche, and M. Kleitz, Electrochimica Acta, 40, 1741 (1995).
69.Hammouche, E. Siebert, and M. Kleitz, J. Electrochem. Soc., 138, 1212 (1991).
70.T. Ioroi, T. Hara, Y Uchimoto, Z. Ogumi, and Z. Takehara, J. Electrochem. Soc., 145, 1999(1998).
71.F. P. F. van Berkel, F. H. van Heuveln, and J. P. P. Huijsmans, Solid State Ionics, 72, 240 (1994).
72.V. Brichzin, J. Fleig, H. U. Habermeier, and J. Maier, Electrochem. Solid State Lett., 3, 403 (2000).
73.M. J. L. Oestergard and M. Mogensen, Electrochimica Acta, 38, 2015 (1993).
74.D. Herbstritt, A. Weber, and E. Ivers-Tiffée. In Proc. 6th Intl. Symp. Solid Oxide Feul Cells’. S. C. Singhal (Ed). Pennington. Nj. P.973 (1999)
75.E. Ivers-Tiffée, A. Weber, and D. Herbstritt, J. Euro. Ceram. Soc., 21, 1805 (2001).
76.Allen J. Bard, Larry R. Faulkner“Electrochemical methods-Fundamentals and application”, Wiley (2001).
77.C. W. Tanner, K. Z. Fung, and A. V. Virkar, J. Electrochem. Soc., 144, 21 (1997).
78.H. Yokokawa and T. Horita, Chap. 5-Cathodes, in “High Temperature Solid Oxide Fuel Cell”, edited by S. C. Singhai and K. Kendall, Elsevier (2003).
79.H. B. Oldham and J. C. Myland, Fundamentals of Electrochemical Science, Academic Press (1994).
80.F.H. Van Heuveln, H.J.M. Bouwmeester, F.P.F. van Berkel, J. Electrochem. Soc., 144, 126 (1997).
81.Teruhisa Horita, Katsuhiko Yamaji, Natsuko Sakai, Harumi Yokokawa,a, Andre´ Weber, Ellen Ivers-Tiffe´eb Journal of The Electrochemical Society, 148 (5), A456 (2001).
82.Francesca Deganello, Vincenzo Esposito, Masaru Miyayama, Enrico Traversa, Journal of The Electrochemical Society, 154(2), A89 (2007).
83.Nora A. Merino, Bibiana P. Barbero, Caroline Cellier, Julio Andrade Gamboa, and Luis E. Cadús, Catalysis Letters, 113, 130 (2007).
84.Qiang Li, Yong Fan, Hui Zhao, Li-Ping Sun, Li-Hua Huo, Journal of Power Sources, 167, 64 (2007).
85.Hiroyuki Uchida, Manabu Yoshida, Masahiro Watanabe, Journal of The Electrochemical Society, 146, 1 (1999).
86.Z. Hiroi and M. Takano, Nature, 377, 41 (1995).
87.A.W. Webb, K. H. Kim and C. Bouldin, Solid State Commun., 79 , 507 (1991).
88.Hee Sung Yoon, Seung Woo Choi, Dokyol Lee, Byong Ho Kim, Journal of Power Sources, 93, 1 (2001).
89.Seunghun Lee , Yongho Lima, Eun A Lee, Hae Jin Hwang, Ji-Woong Moon, Journal of Power Sources, 157 , 848 (2006).

QR CODE