簡易檢索 / 詳目顯示

研究生: 黃國雄
Kuo-Hsiung Huang
論文名稱: 一種植基於背光控制技術的低功率顯示系統設計
A Low Power Display System Based on Backlight Control Technique
指導教授: 阮聖彰
Shanq-Jang Ruan
口試委員: 許孟超
Mon-Chau Shie
林昌鴻
Chang-Hong Lin
吳晉賢
Chin-Hsien Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 51
中文關鍵詞: 背光控制低功率顯示系統
外文關鍵詞: Backlight Control, Low Power Display System
相關次數: 點閱:203下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前市面上的平板電腦、智慧型手機、個人行動助理、數位相機、以及其他的手持式裝置都是靠電池來提供電力。然而,電池的技術發展卻遠落後於半導體以及應用軟體的效能成長。目前的手持式裝置更以輕、薄、短、小做為設計導向,而電池本身必須同時考慮電池容量和體積。因此,電池的長效性發展通常無法完全解決裝置蓄電量不足的問題。
    目前低功率技術可以分為低耗能積體電路設計、匯流排編解碼、以及背光控制三個種類。低功率積體電路技術是以時脈閘控、電源閘控、和動態電源頻率調整等方式來減少耗電量。匯流排編解碼技術則是減少訊號傳輸的串音干擾和其他訊號延遲來避免額外的功率消耗。背光控制技術則是直接將顯示器需要使用背光進行節能設計。相較於成熟的低功率積體電路和匯流排控制器設計,背光控制技術仍然具備十分重大的發展性。
    本研究突破以往低功率技術只能依賴IC設計和匯流排編解碼的限制,並發展出一種新的背光控制技術來完成低功率顯示系統設計,同時輔以背光補償技術來增強顯示效果。本研究提出的背光控制與補償技術同時依據影像處理的統計資料做計算,因此具備背光調降和影像補償之間的比例性。經由電路功率消耗的實際量測與視覺檢驗兩種測試指出,本論文提出的方法能夠更節能地呈現影像的顯示效果。


    Batteries are the source of electric power for many portable devices, such as Tablet PC, smart phone, Personal Digital Assistant (PDA), and digital camera. As weight, thickness, length, and size are four directions of developing portable devices, lightweight is also considered natural for designing batteries. In contrast with the development of semiconductor and applicable software, the technique of batteries is scientifically backward. Therefore, the current techniques of batteries are still hard to deal with the mentioned problems.
    In general, low power technology can be developed by integrated circuit (IC) design, bus codec design, and backlight control for displaying. Low power IC focuses on the efficiency of DC/AC power inverters, the reduction of the working voltage and frequency, and the limitation of unnecessary power consumption in either idle mode or unused circuits. The bus codec scheme puts emphasis on the concurrent reduction of power consumption, noise, and delay time for the switching traffic. Color thin-film transistor (TFT) liquid crystal displays (LCDs) are equipped to many consumer products, while the backlight control is contributory to lower the power consumption for display systems.
    As the IC technique and bus codec are ripe for the low power issue, backlight control technique is still developing toward for the multimedia application. Therefore, this thesis highlights the backlight power consumption and compensates for the degraded quality of the image due to the scaled LCDs. The proposed method uses image processing algorithm to adjust power, while the related statistics are further included to dynamically compensate the image according to the original probability density. In other words, the balance between backlight reduction and image compensation is achieved according to the content of the displayed image. Experimental results demonstrate that the proposed method can reduce the power consumption of the display system, while the image can be enhanced to effectively present the visual effect.

    推薦書 ..........................1 審定書 ..........................2 中文摘要 ........................3 英文摘要 ........................4 誌謝 ............................6 目錄 ............................7 表目錄 ..........................9 圖目錄 .........................10 演算法目錄 .....................12 1. 緒論 ........................13 1.1. 研究動機 ................13 1.2. 研究目標 ................15 1.3. 研究方法 ................18 1.4. 論文架構 ................18 2. 背光控制 ....................19 2.1. 背光控制分類 ............19 2.2. 硬體設計 ................19 2.3. 軟體演算法 ..............22 2.4. 研發方向討論 ............23 3. 背光補償 ....................24 3.1. 背光補償方法回顧 ........24 3.2. 空間域濾波器 ............24 3.3. 頻率域濾波器 ............25 3.4. 直方圖調整法 ............26 3.5. 方法討論 ................28 4. 低功率顯示系統 ..............29 4.1. 顯示系統架構 ............29 4.2. 背光控制 ................30 4.3. 背光補償 ................32 4.4. 色系選擇 ................34 4.4.1. RGB色彩模型 .........35 4.4.2. HSV色彩模型 .........35 4.4.3. YUV色彩模型 .........36 4.4.4. YCbCr色彩模型 .......36 4.4.5. 色彩模型分析與加速 ..37 5. 實驗結果 ....................38 5.1. 系統功率分佈 ............38 5.2. 背光功率消耗量測 ........38 5.3. 背光補償評估 ............41 6. 結論 ........................45 參考文獻 .......................46 授權書 .........................50

    [1]A. Maheshwari, W. Burleson, and R. Tessier, “Trading off transient fault tolerance and power consumption in deep submicron (DSM) VLSI circuit,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 3, pp. 299-311, Mar. 2004.
    [2]S.-J. Ruan, T.-C. Kan, and J.-C. Hsu, “A novel crosstalk quantitative approach for simultaneously reducing power, noise, and delay based on invert-base bus encoding schemes,” IEEE/ACM Great Lakes Symposium on VLSI (GLSVLSI), May 2010, pp. 357-360.
    [3]P.-S. Tsai, C.-K. Liang, T.-H. Huang, and H. H. Chen, “Image enhancement for backlight-scaled TFT-LCD displays,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 4, pp. 574-583, Apr. 2009.
    [4]H. Cho and O.-K. Kwon, “A local dimming algorithm for low power LCD TVs using edge-type LED backlight,” IEEE Trans. Consum. Electron., vol. 56, no. 4, pp. 2054-2060, Nov. 2010.
    [5]C.-L. Chu, T.-L. Chiu, and K.-H. Chen, “Pseudo zero-dimension dimming for power reduction in field sequential color liquid crystal display systems,” J. Disp. Technol., vol. 6, no. 8, pp. 323-331, Aug. 2010.
    [6]D. Cho, W.-S. Oh, and G. W. Moon, “A novel adaptive dimming LED backlight system with current compensated X-Y channel drivers for LCD TVs,” J. Disp. Technol., vol. 7, no. 1, pp. 29-35, Jan. 2011.
    [7]H. Nam, “Low power active dimming liquid crystal display with high resolution backlight,” Electron. Lett., vol. 47, no. 9, pp. 538-540, Apr. 2011.
    [8]C.-C. Lai and C.-C. Tsai, “Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications,” IEEE Trans. Consum. Electron., vol. 54, no. 2, pp. 669-674, May 2008.
    [9]H. Cho and O.-K. Kwon, “A backlight dimming algorithm for low power and high image quality LCD applications,” IEEE Trans. Consum. Electron., vol. 55, no. 2, pp. 839-844, May 2009.
    [10]S.-J. Kang and Y. H. Kim, “Image integrity-based gray-level error control for low power liquid crystal displays,” IEEE Trans. Consum. Electron., vol. 55, no. 4, pp. 2401-2406, Nov. 2009.
    [11]T.-H. Kim, K.-S. Choi, and S.-J. Ko, “Backlight power reduction using efficient image compensation for mobile devices,” IEEE Trans. Consum. Electron., vol. 56, no. 3, pp. 1972-1978, Aug. 2010.
    [12]J.-J. Hong, S.-E. Kim, and W.-J. Song, “A clipping reduction algorithm using backlight luminance compensation for local dimming liquid crystal displays,” IEEE Trans. Consum. Electron., vol. 56, no. 1, pp. 240-246, Feb. 2010.
    [13]H. Jung, Y. Lee, B. Choi, and D. Y. Suh, “Cooperative local dimming for accurate backlight brightness matching,” Electron. Lett., vol. 47, no. 4, pp. 252-254, Feb. 2011.
    [14]S.-J. Kang and Y. H. Kim, “Multi-histogram-based backlight dimming for low power liquid crystal displays,” J. Disp. Technol., vol. 7, no. 10, pp. 544-549, Oct. 2011.
    [15]Y.-K. Lai, Y.-F. Lai, and P.-Y. Chen, “Content-based LCD backlight power reduction with image contrast enhancement using histogram analysis,” J. Disp. Technol., vol. 7, no. 10, pp. 550-555, Oct. 2011.
    [16]S. S. Agaian, K. Panetta, and A. M. Grigoryan, “Transform-based image enhancement algorithms with performance measure,” IEEE Trans. Image Process., vol. 10, no. 3, pp. 367-382, Mar. 2001.
    [17]R. Schettini, F. Gasparini, S. Corchs, F. Marini, A. Capra, and A. Castorina, “Contrast image correction method,” J. Electron. Imaging, vol. 19, no. 2, 023005, Apr.-Jun. 2010.
    [18]S. Lee, H. Kwon, H. Han, G. Lee, and B. Kang, “A space-variant luminance map based color image enhancement,” IEEE Trans. Consum. Electron., vol. 56, no. 4, pp. 2636-2643, Nov. 2010.
    [19]S. Lee, V. H. S. Ha, and Y.-H. Kim, “Dynamic range compression and contrast enhancement for digital images in the compressed domain,” Opt. Eng., vol. 45, no. 2, 027008, Feb. 2006.
    [20]H. D. Cheng, R. Min, and M. Zhang, “Automatic wavelet base selection and its application to contrast enhancement,” Signal Process., vol. 90, no. 4, pp. 1279-1289, Apr. 2010.
    [21]Z.-G. Wang, Z.-H. Liang, and C.-L. Liu, “A real-time image processor with combining dynamic contrast ratio enhancement and inverse gamma correction for PDP,” Displays, vol. 30, no. 3, pp. 133-139, Jul. 2009.
    [22]F.-C. Cheng and S.-J. Ruan, “Image quality analysis of a novel histogram equalization method for image contrast enhancement,” IEICE Trans. Inf. and Syst., vol. E93-D, no.7, pp. 1773-1779, Jul. 2010.

    QR CODE