簡易檢索 / 詳目顯示

研究生: 周陸琳
Lu-lin Chou
論文名稱: 非均相觸媒之阿魏酸乙酯合成反應動力行為研究
Kinetic Behavior Study on the Synthesis of Ethyl Ferulate over Heterogeneous Catalyst
指導教授: 李明哲
Ming-Jer Lee
口試委員: 吳弦聰
Hsien-Tsing Wu
李豪業
Hao-Yeh Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 144
中文關鍵詞: 非均相觸媒阿魏酸乙酯阿魏酸酯化反應動力學研究
外文關鍵詞: Kinetic Behavior Study, Ethyl Ferulate
相關次數: 點閱:437下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用批式反應器探討由阿魏酸與乙醇合成阿魏酸乙酯合成反應之非均相反應動力行為,反應中使用酸性陽離子交換樹脂Amberlyst 39為觸媒。實驗操作於323.15 K至343.15 K之間,此外,並探討(醇/酸)進料莫耳比、觸媒質傳阻力以及觸媒添加量之效應。
反應動力實驗結果顯示,反應速率隨著反應溫度、(醇/酸)進料莫耳比、觸媒量以及轉速提高而加快,而昇高反應溫度與(醇/酸)進料莫耳比也會提升酸之平衡轉化率。經由吸附平衡實驗結果得知,阿魏酸乙酯之合成反應中各成分於Amberlyst 39之吸附強度分別依序為水>乙醇>阿魏酸乙酯。
阿魏酸乙酯合成反應動力數據均分別以理想溶液擬均相模式(IQH)、非理想溶液擬均相動力模式(NIQH)、Eley-Rideal(ER)模式、Langmuir-Hinshelwood-Hougen-Watson(LHHW)模式以及LHHW with Ka (LHHW-Ka)模式關聯,並求得最適化的動力參數值,NRTL模式則用於計算各反應成分之活性係數,關聯結果顯示LHHW模式為描述阿魏酸乙酯合成反應的非均相催化動力行為的最佳模式。


The heterogeneous kinetics behavior was investigated with a batch reactor for the synthesis of ethyl ferulate from ferulic acid with ethanol over cation-exchange resins, Amberlyst 39. The experiments wereconducted at temperatures from 323.15 K to 343.15 K. Additionally, the effects of molar ratio of ethanol to acid in the feed stream, the mass transfer resistance on the catalytic reaction, and the different levels of catalyst loadings were also observed.
The reaction rateof acid increased with increase of reaction temperature, molar ratio ofethanol to acidin the feed stream, catalyst loading, and agitation speed. Furthermore, the equilibrium conversion of acid increased with increase of reaction temperature and molar ratio of ethanol to acid in the feed stream.The relative adsorption strengths of the reacting species were determined by adsorption experiments.The resultsindicated that the magnitude of adsorption strengths on Amberlyst 39 followed the order of water >ethanol>ethyl ferulate.
The kinetic data of the synthesis of ethyl ferulate were correlated with theideal-quasi-homogeneous (IQH),the non-ideal-quasi-homogeneous(NIQH), theEley-Rideal(ER),the Langmuir-Hinshelwood-Hougen-Watson (LHHW) and theLangmuir-Hinshelwood-Hougen-Watson with Ka (LHHW-Ka) models,respectively. The optimal values of the kinetic parameters were determined from the data fitting. The NRTL model was used to calculate the activity coefficients for each reacting species. The LHHWmodel yielded the best representation for the kinetic behavior of heterogeneous catalytic synthesis ofethyl ferulate.

目錄 摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 IX 表目錄 XII 第一章緒論 1 1-1 前言 1 1-2文獻回顧 3 1-3 本研究之重點 33 第二章反應動力實驗 42 2-1 酯化反應動力數據量測 42 2-2 藥品 46 2-3 實驗步驟 46 2-4 組成分析 47 2-5 動力反應實驗結果 48 2-6 結果與討論 49 第三章等溫吸附平衡實驗 63 3-1 雙成份系統吸附平衡測量 63 3-2藥品 67 3-3實驗步驟 68 3-4數據處理 70 3-5吸附實驗結果 73 3-6 吸附實驗數據關聯結果 73 第四章動力模式 85 4-1 動力模式 85 4-2理想溶液擬均相動力模式 86 4-3非理想溶液動力模式 88 4-4 速率常數與吸附常數的訂定 91 4-5阿魏酸乙酯之動力模式關聯結果 92 4-6 非理想溶液之平衡常數 93 4-7 Langmuir-Hinshelwood-Hougen-Watson with Ka(LHHW-Ka)動力模式 96 第五章結論與建議 111 5-1 結論 111 5-2 建議與注意事項 113 參考文獻 114 符號說明 128

參考文獻
Abrams, D. S. and J. M. Prausnitz, “Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems,” AIChE J., Vol. 21, pp. 116-128 (1975).

Ali, S. H., “Kinetics of Catalytic Esterification of Propionic Acid with Different Alcohols over Amberlyst 15,” Int. J. Chem. Kinet., Vol. 41, pp. 432-448 (2009).

Ali, S. H. and S. Q. Merchand, “Kinetic Study of Dowex 50 Wx8-Catalyzed Esterification and Hydrolysis of Benzyl Acetate,” Ind. Eng. Chem. Res., Vol. 48, pp. 2519-2532 (2009).

AL-Jarallah, A. M., M. A. B. Siddiqui, and A. K. K. Lee, “Kinetics of Methyl Tertiary Butyl Ether Synthesis Catalyzed by Ion Exchange Resin,” Cand. J. Chem. Eng., Vol. 66, pp. 802-807 (1988).

Altiokka, M. R. and A. Citak, “Kinetic Study of Esterification of Acetic Acid with Isobutanol in the Presence of Amberlite Catalyst,” App. Catal. A: General, Vol. 239, pp. 141-148 (2003).

Altiokka, M. R. and E. Odes, “Reaction Kinetics of the Catalytic Esterification of Acrylic Acid with Propylene Glycol,” App. Catal. A:General, Vol. 362, pp. 115-120 (2009).

Aranda, D. A. G., R. T. P. Santos, N. C. O. Tapanes, A. L. D. Ramos, and O. A. C. Antunes, “Acid-Catalyzed Homogeneous Esterification Reaction for Biodiesel Production from Palm Fatty Acids,” Catal. Lett., Vol. 122, pp. 20-25 (2008).

Asthana, N. S., A. K. Kolah, D. T. Vu, C. T. Lira, and D. J. Miller, “A Kinetic Model for the Esterification of Lactic Acid and Its Oligomers,” Ind. Eng. Chem. Res., Vol. 45, pp. 5251-5257 (2006).

Blagov, S., S. Parada, O. Bailer, P. Moritz, D. Lam, R. Weinand, and H. Hasse, “Influence of Ion-Exchange Resin Catalysts on Side Reactions of the Esterification of n-Butanol with Acetic Acid,” Chem. Eng. Sci., Vol. 61, pp. 753-765 (2006).

Calvar, N., B. Gonzalez, and A. Dominguez, “Esterification of Acetic Acid with Ethanol: Reaction Kinetics and Operation in a Packed Bed Distillation Column,” Chem. Eng. and Process. , Vol. 46, pp. 1317-1323 (2007).

Chen, X., Z. Xu, and T. Okuhara, “Liquid Phase Esterification of Acrylic Acid with 1-Butanol Catalyzed by Solid Acid Catalysts,” App. Catal. A: General, Vol. 180, pp. 261-269 (1998).

Dassy, S., H. Wiame, and F. C. Thyrion, “Kinetics of the Liquid Phase Synthesis and Hydrolysis of Butyl Lactate Catalyzed by Cation Exchange Resin,” J. Chem. Tech. Biotechnol., Vol. 59, pp. 149-156 (1994).

Delgado, P., M. T. Sanz, and S. Beltran, “Kinetic Study for Esterification of Lactic Acid with Ethanol and Hydrolysis of Ethyl Lactate Using an Ion-Exchange Resin Catalyst,” Chem. Eng. and Process., Vol. 126, pp. 111-118 (2007).

Deshmane, V. G., P. R. Gogate, and A. B. Pandit, “Ultrasound Assisted Synthesis of Isopropyl Esters from Palm Fatty Acid Distillate,” Ultrasonics Sonochemistry, Vol. 16, pp. 345-350 (2009).

Devulapelli, V. G. and H.-S. Weng, “Synthesis of Cinnamyl Acetate by Solid-Liquid Phase Transfer Catalysis: Kinetic Study with a Batch Reactor,”Catal. Communications,Vol. 10, pp. 1638-1642 (2009).

Figueiredo, K. C. D. S., V. M. M. Salim, and C. P. Borges, “Synthesis and Characterization of a Catalytic Membrane for Pervaporation-Assisted Esterfication Reactors,” Catal.Today, Vol. 133-135, pp. 809-814 (2008).

Fredenslund, A., J. Gmehling, and P. Rasmussen, “Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method,” Elsevier, Amsterdam (1977).

Gangadwala, J., S. Mankar, S. Mahajani, A. Kienle, and E. Stein, “Esterification of Acetic Acid with Butanol in the Presence of Ion-Exchange Resins as Catalysts,” Ind. Eng. Chem. Res., Vol. 42, pp. 2146-2155 (2003).

Gmehling, J. and U. Onken, “Vapor-Liquid Equilibrium Data Collection,” Lehrstuhl Technische Chemie B, Universitat Dortmund, Frankfurt, Germany, pp.115 (1977a).

Gmehling, J. and U. Onken, “Vapor-Liquid Equilibrium Data Collection,” Lehrstuhl Technische Chemie B, Universitat Dortmund, Frankfurt, Germany, pp.268 (1977b).

Gonzalez, J. C., and J. R. Fair, “Preparation of Tertiary Amyl Alcohol in a Reactive Distillation Column. 1. Reactive Kinetics, Chemical Equilibrium, and Mass-Transfer Issues,” Ind. Eng. Chem. Res., Vol. 36, pp. 3833-3844 (1997).

Grob, S. and H. Hasse, “Reaction Kinetics of the Homogeneously Catalyzed Esterification of 1-Butanol with Acetic Acid in a Wide Range of Initial Compositions,” Ind. Eng. Chem. Res. , Vol. 45, pp. 1869-1874 (2006).

Goli, V.R.,M. Mekala, S.K. Thamida, “Pore Diffusion Model to Predict the Kinetics ofHeterogeneousCatalyticEsterification of Acetic Acid and Methanol”,Chem. Eng.Sci. , Vol.104, pp. 565-573 (2013).

Hasanoglu, A., Y. Salt, S. Keleser, S. Ozkan, and S. Dincer, “Pervaporation Separation of Ethyl Acetate-Ethanol Binary Mixtures using Polydimethylsiloxane Membranes,” Chem. Eng. and Process. , Vol. 44, pp. 375-381 (2005).

Hasanoglu, A., Y. Salt, S. Keleser, S. Ozkan, and S. Dincer, “Pervaporation Separation of Organics from Multicomponent Aqueous Mixtures,” Chem. Eng. and Process., Vol. 46, pp. 300-306 (2007).

Hasanoglu, A., Y. Salt, S. Keleser, and S. Dincer, “The Esterification of Acetic Acid with Ethanol in a Pervaporation Membrane Reactor,” Desalination, Vol. 245, pp. 662-669 (2009).

Huang, Y. S. and K. Sundmacher, “Kinetic Study of Propyl Acetate Synthesis Reaction Catalyzed by Amberlyst 15,” International Journal of Chemical Kinetics , Vol. 10, pp. 245-253 (2006).

Ilgen, O.,“Adsorption of Oleic Acid from Sunflower Oil on Amberlyst A26 (OH),”Fuel Processing Technology, Vol. 118,pp. 69-74(2013).

Ilgen,O.,“Investigation of Reaction Parameters, Kinetics and Mechanism ofOleicAcid Esterification with Methanol by Using Amberlyst 46 as a Catalyst,”Fuel Processing Technology, Vol. 124,pp.134-139(2014).

JagadeeshBabu, P. E., K. Sandesh, and M. B. Saidutta, “Kinetics of Esterification of Acetic Acid with Methanol in the Presenceof Ion Exchange Resin Catalysts,”Ind. Eng. Chem. Res., Vol. 50, pp.7155-7160(2011).

Jong, M. C. de, R. Feijt, E. Zondervan, T. A. Nijhuis, and A. B. de Haan, “Reaction Kinetics of the Esterification of Myristic Acid with Isopropanol and n-Propanol Using p-Toluene Sulphonic Acid as Catalyst,”Appl. Catal. A: General, Vol. 365, pp. 141-147 (2009).
Kirbaslar, S. I., H. Z. Terzioglu, and U. Dramur, “Catalytic Esterification of Methyl Alcohol with Acetic Acid,” Chinese J. Chem. Eng., Vol. 9, pp. 90-96 (2001).

Kolah, A. K., N. S. Asthana, D. T. Vu, C. T. Lira, and D. J. Miller, “Reaction Kinetics of the Catalytic Esterification of Citric Acid with Ethanol,” Ind. Eng. Chem. Res. , Vol. 46, pp. 3180-3187 (2007).

Lee, M. J., J. Y. Chiu, and H. M. Lin, “Kinetics of Catalytic Esterification of Acetic Acid and n-Butanol over Amberlyst 35,” Ind. Eng. Chem. Res., Vol. 41, pp. 2882-2887 (2002).

Lee, M. J., P. L. Chou, and H. M. Lin, “Kinetics of Synthesis and Hydrolysis of Ethyl Benzoate over Amberlyst 39,” Ind. Eng. Chem. Res., Vol. 44, pp. 725-732 (2005).

Lee, M. J., H. T. Wu, and H. M. Lin, “Kinetics of Catalytic Esterification of Acetic Acid and Amyl Alcohol over Dowex,” Ind. Eng. Chem. Res., Vol. 39, pp. 4094-4099 (2000).

Lilja, J., J. Aumo, T. Salmi, D. Yu. Murzin, P. Maki-Arvela, M. Sundell, K. Ekman, R. Peltonen, and H. Vainio, “Kinetics of Esterification of Propanoic Acid with Methanol over a Fibrous Polymer-Supported Sulphonic Acid Catalyst,” App. Catal. A: General, Vol. 228, pp. 253-267 (2002a).

Lilja, J., D. Yu. Murzin, T. Salmi, J. Aumo, P. Maki-Arvela, and M. Sundell, “Esterification of Different Acids over Heterogeneous and Homogeneous Catalysts and Correlation with Taft Equation,” J. Mole.Catal. A: Chem., Vol. 182-183, pp. 555-563 (2002b).

Lilja, J., J. Warna, T. Salmi, L. J. Pettersson, J. Ahlkvist, H. Grenman, M. Ronnholm, and D. Yu. Murzin, “Esterification of Propanoic Acid with Ethanol, 1-Propanol and Butanol over a Heterogeneous Fiber Catalyst,” Chem. Eng. J., Vol. 115, pp. 1-12 (2005).

Liu, W. T. and C. S. Tan, “Liquid-Phase Esterification of Propionic Acid with n-Butanol,” Ind. Eng. Chem. Res., Vol. 40, pp. 3281-3286 (2001).

Liu, Y., E. Lotero, and J. G. Goodwin Jr., “A Comparison of the Esterification of Acetic Acid with Methanol Using Heterogeneous Acid Catalysis,” Journal of Catalysis, Vol. 242, pp. 278-286 (2006).

Mahajani, S. M., “Reactions of Glyoxylic Acid with Aliphatic Alcohols Using Cationic Exchange Resins as Catalysts,” Reactive & Functional Polymers, Vol. 43, pp. 253-268 (2000).

Maki-Arvela, P., T. Salmi, M. Sundell, K. Ekman, R. Peltonen, and J. Lehtonen, “Comparison of Polyvinybenzene and Polyolefin Supported Sulphonic Acid Catalysts in the Esterification of Acetic Acid,” Applied Catalysis A: General, Vol.184, pp. 25-32 (1999).

Malone, M. F. and M. F. Doherty, “Finding the Right Angle,” CAST Communication, Vol. 20, pp. 5-12 (1997).

Mazzotti, M., B. Neri, D. Gelosa, A. Kruglov, and M. Morbidelli, “Kinetics of Liquid-Phase Esterification Catalyzed by Acidic Resins,” Ind. Eng. Chem. Res., Vol. 36, pp. 3-10 (1997).
Michalkiewicz, B., M. Jarosinska, and I. Lukasiewicz, “Kinetic Study on Catalytic Methane Esterification in Oleum Catalyzed by Iodine,” Chem. Eng. J., Vol. 154, pp. 156-161 (2009).

National Institute of Standards and Technology (NIST) Chemistry WebBook (http:// webbook.nist.gov/chemistry/).

Orjuela, A., A. J. Yaneza, A. Santhanakrishnan, C. T. Lira, and D. J. Miller, “Kinetics of Mixed Succinic Acid/Acetic Acid Esterification with Amberlyst 70 Ion Exchange Resin as Catalyst,” Chem. Eng. J., Vol. 188, pp. 98-107 (2012).

Park, J. Y., D. K. Kim, and J. S. Lee, “Esterification of Free Fatty Acids Using Water-Tolerable Amberlyst as a Heterogeneous Catalyst,”Bioresource Technol., Vol. 101, pp. S62-S65 (2010).

Pasias, S., N. Barakos, C. Alexopoulos, and N. Papayannakos, “Heterogeneously Catalyzed Esterification of FFAs in Vegetable Oils,” Chem. Eng. Technol., Vol. 29, pp. 1365-1371 (2006).

Peters, T. A., E. Benes, A. Holmen, and J. T. F. Keurentjes, “Comparison of Commercial Solid Acid Catalysts for the Esterification of Acetic Acid with Butanol,” Applied Catalysis A: General, Vol. 297, pp. 182-188 (2006).
Phan, A. N. and T. M. Phan, “Biodiesel Production from Waste Cooking Oils,” Fuel, Vol. 87, pp. 3490-3496 (2008).

Pipus, G., I. Plazl, and T. Koloini, “Esterification of Benzoic Acid in Microwave Tubular Flow Reactor,” Chem. Eng. J., Vol. 76, pp. 239-245 (2000).

Poling, B. E., J. M. Prausnitz, and J. P. O’Connell, “The Properties of Gases and Liquids”, McGraw-Hill International Editions, Fifth edition, pp. 3.6-3.7, A.22, A.34, and C.2 (2001).

Popken, T., L. Gotze, and J. Gmehling, “Reaction Kinetics and Chemical Equilibrium of Homogeneously and Heterogeneously Catalyzed Acetic Acid Esterification with Methanol and Methyl Acetate Hydrolysis,” Ind. Eng. Chem. Res., Vol. 39, pp. 2601-2611 (2000).

Rehfinger, A. and U. Hoffmann, “Kinetics of Methyl Tertiary Butyl Ether Liquid Phase Synthesis Catalyzed by Ion Exchange Resin - I. Intrinsic Rate Expression in Liquid Phase Activities,”Chem. Eng. Sci., Vol. 45, pp. 1605-1617 (1990).

Renon, H. and J. M. Prausnitz, “Local Compositions in Thermodynamic Excess Function for Liquid Mixtures,” AIChE J., Vol. 14, pp.135-144 (1968).

Rattanaphra, D., A. P. Harvey, A. Thanapimmetha, and P. Srinophakun, “Kinetic of Myristic Acid Esterification with Methanol in the Presence ofTriglycerides over Sulfated Zirconia,”Renewable Energy., Vol. 36,pp.2679-2686(2011).
Sanz, M. T., R. Murga, and J. L. Cabezas, “Autocatalyzed and Ion-Exchange-Resin-Catalyzed Esterification Kinetics of Lactic Acid with Methanol,” Ind. Eng. Chem. Res., Vol. 41, pp. 512-517 (2002).

Schmid, B., M. Doker, and J. Gmehling, “Esterification of Ethylene Glycol with Acetic Acid Catalyzed by Amberlyst 36,” Ind. Eng. Chem. Res., Vol. 47, pp. 698-703 (2008).

Shekara B. M., C. Ravindra Reddy, C. R. Madhuranthakam, B. S. Jai Prakash, and Y. S. Bhat, “Kinetics of Esterification of Phenylacetic Acid with p-Cresol over H-βZeolite Catalyst under Microwave Irradiation,”Ind. Eng. Chem. Res., Vol. 50, pp.3829-3835 (2011).

Schmitt, M., and H. Hasse, “Chemical Equilibrium and Reaction Kinetics of Heterogeneously Catalyzed n-Hexyl Acetate Esterification,” Ind. Eng. Chem. Res., Vol. 45, pp. 4123-4132 (2007).

Schwarzer, S., and U. Hoffmann, “Experimental Reaction Equilibrium and Kinetics of the Liquid-phase Butyl Acrylate Synthesis Applied to Reactive Distillation Simulations,” Chem. Eng. Technol., Vol. 25 , pp. 975-980 (2002).

Selyakova, V. A., G. F. Vytnov, and A. P. Sineokov, “Study of the Esterification of Acrylic Acid by Butyl Alcohol,” Russ. J. Phys. Chem. (Engl. Transl.)Vol. 50, pp. 1692-1694 (1976).

Seo, Y. and W. H. Hong, “Kinetics of Esterification of Lactic Acid with Methanol in the Presence of Cation Exchange Resin Using a Pseudo- Homogeneous Model,” J. Chem. Eng. Japan, Vol. 33, pp. 128-133 (2000).

Song, W., G. Venimadhavan, J. M. Manning, M. F. Malone, and M. F. Doherty, “Measurement of Residue Curve Maps and Heterogeneous Kinetics in Methyl Acetate Synthesis,” Ind. Eng. Chem. Res., Vol. 37, pp. 1917-1928 (1998).

Steele, W. V., R. D. Chirico, A. B. Cowell, S. E. Knipmeyer, and A. Nguyen, “Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for Methyl Benzoate, Ethyl Benzoate, (R)-(+)-Limonene, tert-Amyl Methyl Ether, trans-Crotonaldehyde, and Diethylene Glycol,” J. Chem. Eng. Data, Vol. 47, pp. 667-688 (2002).

Su, C. H., C. C. Fu, J. Gomes, I. M. Chu, and W. T. Wu, “A Heterogeneous Acid-Catalyzed Process for Biodiesel Production from Enzyme Hydrolyzed Fatty Acids,” AIChE J., Vol. 54, pp. 327-336 (2008).

Teo, H. T. R. and B. Saha, “Heterogeneous Catalyzed Esterification of Acetic Acid with Isoamyl Alcohol: Kinetic Studies,” Journal of Catalysis, Vol. 228, pp. 174-182 (2004).

Tesser, R., M. D. Serio, M. Guida, M. Nastasi, and E. Santacesaria, “Kinetics of Oleic Acid Esterification with Methanol in the Presence of Triglycerides,” Ind. Eng. Chem. Res., Vol. 44, pp. 7978-7982 (2005).

Tesser, R., L. Casale, D. Verde, M. Di Serio, and E. Santacesaria, “Kinetics of Free Fatty Acids Esterification: Batch and Loop Reactor Modeling,” Chem. Eng. J., Vol 154, pp. 25-33 (2009).
Tochigi, K., H. Takahara, Y. Shiga, and Y. Kawase, “Isobaric Vapor-Liquid Equilibria for Water + Propylene Glycol Monomethyl Ether (PGME), Water + Propylene Glycol Monomethyl Ether Acetate (PGMEA), and PGME + PGMEA at Reduced Pressures,” Fluid Phase Equilib., Vol. 260, pp. 65-69 (2007).

Toit, E., R. Schwarzer, and W. Nicol, “Acetone Condensation on a Cation Exchange Resin Catalyst: The Pseudo Equilibrium Phenomenon,” Chem. Eng. Sci., Vol. 59, pp. 5545-5550 (2004).

Toukoniitty, B., J.-P. Mikkola, K. Eranen, T. Salmi, and D. Yu Murzin, “Esterification of Propionic Acid under Microwave Irradiation over an Ion-Exchange Resin,” Catalysis Today, Vol. 100, pp. 431-435 (2005).

TRC Thermodynamic Table: Non-Hydrocarbons, Thermodynamic Research Center, The Texas A & M University System: College Station, TX (1993).

Tsao, J. C. Y., T. C. Huang, and H. S. Weng, “Kinetic Studies for the Preparation of Itaconates by Continuous-Flow and Fixed-Bed Methods,” Ind. Eng. Chem. Process Des.Dev., Vol. 7, pp. 401-409 (1968).

Xu,C.C.,M.R.Nandaa, Z. Yuan, W. Qin, H.S.Ghaziaskarc, and M.A. Poirierd, “Thermodynamic and Kinetic Studies of a Catalytic Process to Convert Glycerol into Solketal as an Oxygenated Fuel Additive,” Fuel, Vol.117, pp. 470-477 (2013).

Xu, X., Y. Zheng, and G. Zheng, “Kinetics and Effectiveness of Catalyst for Synthesis of Methyl tert-Butyl Ether in Catalytic Distillation,” Ind. Eng. Chem. Res., Vol. 34, pp. 2232-2236 (1995).

Xu, Z. P. and K. T. Chuang, “Kinetics of Acetic Acid Esterification over Ion Exchange Catalyst,” Can. J. Chem. Eng., Vol. 74, pp. 493-500 (1996).

Yadav, G. D. and M. B. Thathagar, “Esterification of Maleic Acid with Ethanol over Cation-Exchange Resin Catalysts,” Reactive & Functional Polymers, Vol. 52, pp. 99-110 (2002).

Yalcinyuva, T., H. Deligoz, I. Boz, and M. A. Gurkaynak, “Kinetics and Mechanism of Myristic Acid and Isopropyl Alcohol Esterification Reaction with Homogeneous and Heterogeneous Catalysts,” International Journal of Chemical Kinetics, Vol. 40, pp. 136-144 (2008).

Yang, Z., M. Li,and J. Yang, “Kinetics of Esterification of Lactic Acid with Ethanol Catalyzed by Cation-Exchange Resins,” Reactive & Functional Polymers, Vol. 61, pp. 101-114 (2004).

邱如吟,「產製丙酸丁酯之非均相酯化反應研究」,碩士論文,台灣科技大學化工研究所(2000)。

周珮琳,「苯甲酸乙酯之合成與水解反應動力研究」,碩士論文,台灣科技大學化工研究所(2003)。

蔡雨廷,「戊二酸與甲醇的非均相酯化反應動力行為研究」,碩士論文,台灣科技大學化工研究所(2005)。

蔡於展,「乙酸乙酯非均相觸媒之合成反應動力行為研究」,碩士論文,台灣科技大學化工所(2008)。

李佩容,「戊酸甲酯非均相觸媒之合成反應動力行為研究」,碩士論文,台灣科技大學化工所(2009)。

謝政廷,「含醇類水溶液系統的汽液液相平衡研究」,博士論文,台灣科技大學化工所(2009)。

梁韶芙,「丙二醇甲醚酯非均相觸媒之合成反應動力行為研究」,碩士論文,台灣科技大學化工所(2010)。

張善堯,「非均相觸媒之阿魏酸甲酯合成反應動力行為研究」,碩士論文,台灣科技大學化工所(2012)。

無法下載圖示 全文公開日期 2020/01/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE