簡易檢索 / 詳目顯示

研究生: 吳加山
Jia-Shan Wu
論文名稱: 使用尺度不變性特徵轉換與立體視覺之即時三維物體識別
Real-time 3-D Object Recognition by Using Scale Invariant Feature Transform and Stereo Vision
指導教授: 林其禹
Chyi-Yeu Lin
口試委員: 徐繼聖
G.S. Hsu
鍾國亮
Kuo-Liang Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 65
中文關鍵詞: 尺度不變性特徵轉換顯示卡對應矩陣不同平面旋轉角度立體視覺三維物體識別旋轉不變性機械手臂
外文關鍵詞: Scale Invariant Feature Transform, GPU, homography, out-plane orientations, stereo vision, 3-D object recognition, rotation-invariant, robot arm
相關次數: 點閱:363下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在電腦視覺的領域中,三維物體的辨識與立體視覺是一項重要的工作。在本論文中,我們使用尺度不變性特徵轉換(Scale Invariant Feature Transform, SIFT)來尋找三維物體的特徵,並利用顯示卡運算能力來達成即時運算能力。由於SIFT特徵本身良好的旋轉不變性、尺度不變性(scale-invariance)和抵抗背景雜訊的特性,我們的偵測器便可以達到旋轉不變性,並可以讓物體以不同大小出現時都能被偵測,因為每個物體都有其獨特的特徵,所以我們利用每個物體獨特的特徵來辨識物體,並利用對應矩陣來計算不同平面的旋轉角度。在本論文中,除了利用SIFT方法來即時辨識三維物體外,還加入了立體視覺原理來判斷三維物體與攝影機的距離,並利用物體的位置、不同平面角度與深度資訊來控制機械手臂指出物體。


3-D object recognition and stereo vision are important tasks in computer vision. In this thesis, we use Scale Invariant Feature Transform (SIFT) to search 3-D object features and use GPU to perform the real-time capability. Since SIFT has rotation-invariant, and scale-invariant characteristics, and can handle complex backgrounds, our detector can detect objects of different sizes based on its own unique feature. The corresponding homography is used to calculate the out-plane orientations. In this thesis, we implement the SIFT algorithm to recognize the 3-D objects and also use the stereo vision theorem to determine the distance form the cameras to the object. A robot arm is controlled to point to the object based on the orientations, and depth information of the object.

中文摘要 I Abstract II 目 錄 IV 圖目錄 VI 表目錄 VIII 第一章 序論 1 1.1前言 1 1.2研究目的 2 1.3相關研究 4 1.4論文架構 5 第二章 立體視覺 6 2.1 影像校正 6 2.2 影像深度 8 第三章 利用尺度不變性特徵轉換(SIFT)辨識物體與不同平面之角度偵測 10 3.1偵測尺度空間中的極值 10 3.2剔除不穩定特徵點 15 3.3計算特徵點方向 16 3.4計算特徵點鄰近區域描述子 18 3.5物體辨識 19 3.6物體在空間中的角度方向 21 第四章 使用繪圖處理器(GPU)達成即時運算能力 28 4.1繪圖處理器(GPU)介紹 28 4.2 SIFT利用GPU運算 29 4.2.1著色器語言(Shader Language) 29 4.2.2暫存器的設計 29 4.2.3尺度空間的產生 30 4.2.4特徵點的偵測 32 4.3 GPU與DSP的比較 33 4.4 SIFT使用GPU與CPU的比較 34 第五章 實驗結果與討論 35 5.1程式架構與說明 35 5.2實驗器材介紹 37 5.3實驗方式與結果 40 5.3.1不同背景與物件 40 5.3.2不同平面旋轉 46 5.3.3機械手臂之物體定位 55 5.4結果討論 58 第六章 結論與未來展望 59 6.1結論 59 6.2未來展望 60 參考文獻 61 作者簡介 65

[1] Jia Wang, Wen-jann Yang and Raj Acharya. “Color Clustering Techniques for Color-Content-Based Image Retrieval from Image Databases,” Proceedings of IEEE International Conference on Multimedia Computing Systems, 1997, pp. 442-449.

[2] Wei-Ying Ma and Hong Jiang Zhang. “Benchmarking of image features for content-based retrieval,” Proceedings of the Thirty-Second Asilomar Conference on Signals, Systems & Computers, vol. 1 , 1998, pp. 253–257.

[3] Huang J., S Ravi Kumar, Mandar Mitra, Wei-Jing Zhu, Ramin Zabih. “Image Indexing Using Color Correlograms,” Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 1997, pp. 762-768.

[4] Hideyuki Tamura, Shunji Mori, and Takashi Yamawaki. “Textural Features Corresponding to Visual Perception,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 8, No. 6, Jun. 1978.

[5] Mikolajczyk, K. , Zisserman, A. and Schmid, C. “Shape recognition with edge-based features”, Proceedings of the British Machine Vision Conference, 2003

[6] R. Singh, I. Pavlidis, and N. P. Papanikolopoulos, “Recognition of 2D Shapes through Contour Metamorphosis,” Proceeding of the 1997 IEEE International Conference on Robotics and Automation, pp.1651-1656.

[7] D. Marr and T. Poggio, “Cooperative computation of stereo disparity,” Science, Vol. 194, 1976, pp. 283-287.

[8] S.T. Barnard and W.B. Thompson, “Disparity analysis of images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 2, 1980, pp. 330-340.

[9] Andreas Klaus, Mario Sormann and Konrad Karner, “Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure,” Proceedings of the 18th International Conference on Pattern Recognition, Vol. 03, 2006, pp.15-18.

[10] David G. Lowe, “Object Recognition from Local Scale-Invariant Features,” Proceedings IEEE International Conference Computer Vision, vol. 2, 1999, pp. 1150-1157.

[11] David G. Lowe, “Local feature view clustering for 3D object recognition”. Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol. 1, 2001, pp. 682-688.

[12] David G. Lowe, “Distinctive Image Features from Sacle-Invariant Keypoints,” International Journal of Computer Vision, 2004, vol. 60, no. 2, pp. 91-110.

[13] Camera Calibration Toolbox Web Site at http://www.vision.caltech.edu/bouguetj/index.html

[14] R. C. Gonzalez and R. E. “Woods, Digital image processing,” Addison Wesley, 1993.

[15] Harris, C. and Stephens, M. “A combined corner and edge detector,” Fourth Alvey Vision Conference. Manchester, 1988, UK : 147-151.

[16] P. V. C. Hough, “Method and means for recognizing complex patterns ,” U. S. Patent 3,069,654, 1962.

[17] D. H. Ballard, "Generalizing the Hough transform to detect arbitrary shapes,” Pattern Recognition, vol. 13, n. 2, 1981, pp. 111-122.

[18] Brown, M. and Lowe, D.G. “Invariant features from interest point groups,” In British Machine Vision Conference, Cardiff, Wales, 2002, pp. 656-665.

[19] Richard Szeliski, “Image alignment and stitching: A tutorial,” Technical Report MSR-TR-2004-92, Microsoft Research, December 2004.

[20] R. Sukthankar, R. G. Stockton, M. D. Mullin, "Automatic Keystone Correction for camera-assisted Presentation interface", Proceedings of International Conference on Multimedia Interfaces, pp. 601-714, 2000

[21] Richard Hartley and Andrew Zisserman, “Multiple view geometry in computer vision,” Cambridge University, Cambridge, 2nd edition, 2003.

[22] General-Purpose Graphic Processing Unit, http://www.gpgpu.org/

[23] GPU Shader language source code, http://sourceforge.net/

[24] SIFT on GPU source code, http://cs.unc.edu/~ccwu

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE