簡易檢索 / 詳目顯示

研究生: 林牧杰
Mu-Chieh Lin
論文名稱: 氧化鎳之p 型透明氧化物導電薄膜之特性分析
Growth and Characterization of p-type nickel oxide transparent conducting oxide thin films
指導教授: 趙良君
Liang-Chun Chao
口試委員: 李奎毅
Kuei-Yi Lee
李志堅
Chih-Chien Lee
林保宏
Pao-hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 69
中文關鍵詞: 氧化鎳透明導電膜離子束濺鍍法
外文關鍵詞: nickel oxide, transparent conductive film, ion beam sputtering
相關次數: 點閱:300下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用反應式離子束濺鍍法成功地沉積了氧化鎳薄膜, 並且研究氧氣流量比及沉積基板溫度對於氧化鎳薄膜的光電特性影響。研究結果顯示,在 300℃下的NiO(200)的半高寬會比在 150℃下的NiO(200)窄,半高寬變窄顯示升溫製程使得薄膜結晶性改善。在150℃及 300℃下時,當氧氣流量比上升,發現NiO(200)繞射峰值往小角度偏移,其原因可能為產生過多的氧間隙缺陷,使得NiO晶格間距變大。而拉曼分析指出,隨著氧氣流量比的上升,其晶粒尺寸變小,且拉曼峰值往低能量偏移。在EDS分析中,隨著氧氣流量的上升,其O/Ni比上升,且150℃下薄膜內氧原子的比例會比300℃時高。製程溫度上升使得穿透率改善,但氧氣流量的增加會導致穿透率下降。300C及150C下沉積之NiO能隙隨氧氣流量的增加而由3.6 eV上升至4.2 eV。在 150℃並且全氧的環境下可以得到最低的電阻率3.3 Ω∙cm。


Nickel oxide has been deposited by reactive ion beam sputter deposition. Effects of oxygen partial flow rates and deposition temperatures on the electrical and optical properties of nickel oxide are characterized. Samples deposited at both 150 and 300C are polycrystalline NiO, while the FWHM of NiO(200) decreases as deposition temperature increases. As oxygen partial pressure increases, the diffraction peak position of NiO(200) shifts to the smaller angle, indicating increased lattice constant, which may due to the presence of oxygen interstitial defects. As oxygen partial pressure increases, local vibration mode at 545 cm-1 shifts to lower energy and its FWHM increases, indicating deteriorated crystalline quality. Oxygen atomic percentage increases as oxygen partial pressure increases, while oxygen atomic percentage drops as deposition temperature increases. The bandgap of NiO deposited at 150 and 300C both increases from 3.6 eV to 4.1 eV as oxygen partial pressure increases. NiO deposited at 150C with 100% oxygen partial pressure exhibits the lowest resistivity of 3.3 Ω∙cm

摘要……………………………………………………………….………...………….Ⅰ Abstract…………………………………………………..…………..………....……….Ⅱ 致謝……………………………………………………………………………...……..Ⅲ 目錄…………………………………………………………….………………...…….Ⅳ 圖目錄…………………………………………………………………….………...….Ⅵ 表目錄…………………………………………………………………….…………....Ⅷ 第一章緒論………………………………………………………………………….…1 1-1前言…………………………………………………………………..…….…1 1-2研究動機與目的………………………………………………………...……2 第二章文獻回顧與理論基礎…………………………………………………….……3 2-1透明導電膜……………………………………………………………….......3 2-1-1 TCO之光學性質………….……………………….…………..…3 2-1-2 TCO之導電性質…………………………………..…………..…3 2-2濺鍍原理………………………………………………………………...……4 2-2-1電漿原理……………………….……………………………..…4 2-2-2濺鍍(sputtering) …………………………….....………....................…4 2-2-3離子束濺鍍(Ion beam sputtering) ………….……..….….....……..6 2-2-4反應式濺鍍(Reactive sputtering)……………….……………....…..7 2-3薄膜沉積原理…………………………………………………….…………..7 2-3-1薄膜沉積現象…………………………………………………...7 2-3-2薄膜成長機制…………………………………..……………….9 2-4氧化鎳基本性質……………………………………………………….……10 2-5氧化鎳文獻回顧………………………………………………………….…12 第三章實驗流程與儀器………………………………………………………...……14 3-1實驗流程………………………………………………………………….…14 3-2特性儀器分析……………………………………………………………….17 3-2-1場發射掃描式電子顯微鏡…………………………………….18 3-2-2能量散色光譜儀……………………………………………….18 3-2-3X-ray 繞射儀………………………………………………..….19 3-2-4拉曼光譜……………………………………………………….21 3-2-5四點探針量測………………………………………………….22 3-2-6穿透率量測…………………………………………………….23 3-2-7計算吸收係數(α)及能隙(Eg) …………………….……..…......24 3-2-8反射光譜儀計算膜厚………………………………………….25 第四章結果與討論……………………………………………………………...……30 4-1FE-SEM 分析………………………………………….…...……………..…30 4-2EDS 結果分析………………………………….……………….………...…...34 4-3XRD 結果分析…………………………………………………….….......…36 4-4拉曼光譜分析………………………………………..………….……..…….…43 4-5穿透率分析………………………………………….……..........................…46 4-6能隙計算結果……………………………………………...………………..48 4-7反射光譜量測膜厚………………………………………...………………..50 4-8電性結果分析………………………………………………………….……53 第五章結論與未來展望………………………………………………………...……55 參考文獻…………………………………………………………………………..…...56 圖目錄 圖2-1 Sputtering phenomenons…………………………………………….…..5 圖2-2 Interactions of ions with surfaces………………..……….………........6 圖2-3 Basic modes of thin-film growth………….…….…………..………......….9 圖2-4 NiO cubic 結構示意圖………………………..………….……...........…11 圖2-5 沿 cubic 之(111)變形之 rhombohedral 結構與 fcc cubic 結構比較…....11 圖3-1 以 Sputter 沉積 NiO薄膜示意圖…………...………….………………..15 圖3-2 實驗流程圖……………………...……………………………………….16 圖3-3 場發射掃描式電子顯微鏡………………..…………………….……….17 圖3-4 X-ray 繞射儀…………………………………………….……………...19 圖3-5 布拉格定律繞射示意圖……………………………………………….20 圖3-6 拉曼光譜設備圖……………………………………………………….21 圖3-7 四點探針示意圖……………………………………………………….23 圖3-8 穿透率量測系統示意圖……………………………………………….23 圖3-9 反射光譜量測系統示意圖…………………………………………….25 圖3-10 三層介質正向入射示意圖…………………………………………….26 圖3-11 光程差示意圖………………………………………………………….29 圖3-12 反射光譜行經路線示意圖…………………………………………….29 圖4-1-1(a)150℃,Opf =0.13、(c)150℃,Opf =0.25、(e)150℃,Opf =0.5、 (b)300℃,Opf =0.13、(d)300℃,Opf =0.25、(f)300℃,Opf =0.5之 表面形貌SEM圖….…………………………………………………..32 圖4-1-2(g)150℃,Opf =0.75、(i)150℃,Opf =1、(h)300℃,Opf =0.75、 (b)300℃,Opf =1、之表面形貌SEM圖……………………………..33 圖4-3-1150℃下改變氧氣流量比之X-ray繞射圖…………………….……...38 圖4-3-2300℃下改變氧氣流量比之X-ray繞射圖………………………..…..38 圖4-3-3150℃下NiO(111)繞射峰值位置及晶格常數對氧氣流量比之關係 圖………………………………………………………………….…....41 圖4-3-4150℃下NiO(200)繞射峰值位置及晶格常數對氧氣流量比之關係 圖……...………………………………………………………………..41 圖4-3-5300℃下NiO(111)繞射峰值位置及晶格常數對氧氣流量比之關係 圖...…………………………………………………………………..…42 圖4-3-6300℃下NiO(200)繞射峰值位置及晶格常數對氧氣流量比之關係 圖……….................................................................................................42 圖4-4-1150 ℃下沉積 NiO 薄膜之拉曼光譜分析…...……………..………….44 圖4-4-2300 ℃下沉積 NiO 薄膜之拉曼光譜分析……………………………..44 圖4-5-1150℃下沉積變氧氣流量比之 NiO 薄膜穿透率光譜……..…………47 圖4-5-2300℃下沉積變氧氣流量比之 NiO薄膜穿透率光譜…..………..……...47 圖4-5-3150℃下變氧氣流量之 NiO 薄膜能隙圖……………………………...49 圖4-5-4300℃下變氧氣流量之 NiO 薄膜能隙圖……………………………...49 圖4-5-5150℃、Opf=1下使用matlab擬合與反射光譜量測之曲線 圖…………………………………………………………….…………51 圖4-5-6300℃、Opf=1下使用matlab擬合與反射光譜量測之曲線 圖………………………………………………………….…................52 圖4-6-1150℃及300℃下沉積變氧氣流量 NiO 薄膜之電阻率量測結果……54 表目錄 表3-1-1實驗製程參數……………………………………………………….…16 表4-2-1150℃下沉積NiO薄膜之EDS分析結果(atomic%)……………..……35 表4-2-2300℃下沉積NiO薄膜之EDS分析結果(atomic%)…………..………35 表4-3-1150℃下沉積NiO(111)薄膜之XRD參數分析結果………………....39 表4-3-2150℃下沉積NiO(200)薄膜之XRD參數分析結果…………………39 表4-3-3300℃下沉積NiO(111)薄膜之XRD參數分析結果…………………40 表4-3-4300℃下沉積NiO(200)薄膜之XRD參數分析結果………………....40 表4-4-1150℃下沉積NiO薄膜之拉曼參數分析結果…………………..……..45 表4-4-2300℃下沉積NiO薄膜之拉曼參數分析結果………………..………..45 表4-5-1變溫及變氧氣流量下的能隙值………………………..………….…....50 表4-5-2變溫及變氧氣流量下的膜厚……………………………………….…51

[1]楊明輝, “金屬氧化物透明導電材料的基本原理,” 工業材料雜誌, 179期, pp. 134-138, 2001.
[2]H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, “P-type electrical conduction in transparent thin films of CuAlO2,” Nature, Vol. 389, pp. 399-942, 1997.
[3]E. Fujii, A. Tomozawa, H. Torii, R. Takayama, ”Preferred orientations of NiO films prepared by plasma-enhanced metal organic chemical vapor deposition,” Jpn. J. Appl. Phys., Vol. 35, L328-L330, 1996.
[4]K. Yoshimura, T. Miki, and S. Tanemura, “Nickel oxide electrochromic thin films prepared by reactive DC magnetron sputtering,” Jpn. J. Appl. Phys., Vol. 34, pp. 2440-2446, 1995.
[5]Bögner, M., Fuchs, A., Scharnagl, K., Winter, R., Doll, T., Eisele, I., “Thin (NiO)1−x(Al2O3)x, Al doped and Al coated NiO layers for gas detection with HSGFET,” Sens. Actuator. B, Vol. 47, pp. 145-152, 1998.
[6]I-M. Chan, F. C. Hong, “Improved performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tin oxide anode,” Thin Solid Films, Vol. 450, pp. 304-311, 2004.
[7]Y. M. Lu, W. S. Hwang, J. S. Yang, “Effects of substrate temperature on the resistivity of non-stoichiometric sputtered NiOx films,” Surf. Coat. Technol., Vol. 155, pp. 231-235, 2002.
[8]H. Sato, T. Minami, S. Takata, T. Yamada, “Transparent conducting p-type NiO thin films prepared by magnetron sputtering,” Thin Solid Films, Vol. 236, pp.27-31, 1993.
[9]M. Jarzebski, Oxide semiconductors, Pergamon Press, 1973.
[10]D. Adler, J. Feinleib, “Electrical and optical properties of narrow-band materials,” Phys. Rev. B: Condens. Matter., Vol. 2, pp. 3112-3134, 1970.
[11]楊明輝, 透明導電膜, 藝軒圖書出版社, 2006.
[12]T. J. Coutts, D. L. Young, and X. Li, “Characterization of transparent conducting oxides,” MRS Bull., Vol. 25, pp. 58-65, 2000.
[13]E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev., Vol. 93, pp. 632-633, 1954.
[14]D. M. Mattox, “Particle bombardment effects on thin-film deposition: A review,” J. Vac. Sci. Technol. A, Vol. 7, pp. 1105-1114, 1989.
[15]翁睿哲, 以射頻磁控濺鍍氮化鉭薄膜製程條件對顯微結構及電性影響之研究, 國立成功大學 材料科學及工程學系碩士論文, 中華民國九十年.
[16]B. Lewis and J. C. Anderson, Nucleation and growth of thin films, New York: Academic Press, 1978.
[17]W. R. Grove, “On the electro-chemical polarity of gases,” Phil. Trans. Roy. Soc., Vol. 142, pp. 87-101, 1852.
[18]B. Chapman, Glow discharge processes: sputtering and plasma etching, New York: John Wiley & Sons, 1980.
[19]M. Ohring, Materials science of thin films, 2nd New York: Academic Press, 2002.
[20]C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallicoxides prepared in high vacuum by ion beam sputtering,”Appl. Surf. Sci., Vol. 171, pp. 151-156, 2001.
[21]M. Varasi, C. Misiano, and L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films, Vol. 117, pp. 163-172, 1984.
[22]C. C. Lee, J. C. Hsu, D. T. Wei, an J. H. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films, Vol. 308-309, pp. 74-78, 1997.
[23]S. M. Kane, and K. Y. Ahn, “Characteristics of ion-beam-sputtered thin films,” J. Vac. Sci. Technol., Vol. 16, pp. 171-174, 1979.
[24]S. B. Krupani hi, H. Hu, and V. Kumar, “Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films,” J. Appl. Phys., Vol. 71, pp. 376-388, 1992.
[25]C. C. Lee, D. T. Wei, J. C. Hsu, and C. H. Shen, “Influence of oxygen on some oxide films prepared by ion beam sputter deposition,” Thin Solid Films, Vol. 290-291, pp. 88-93, 1996.
[26]D. L. Smith, Thin-film deposition: principles & practice, New York: McGraw-Hill, 1995.
[27]L. Davis, “Properties of transparent conducting oxides deposited at room temperature,” Thin Solid films, Vol. 236, pp. 1-5, 1993.
[28]N. Ohshima, M. Naka, and Y. Tsukamoto, “Structural and magnetic properties of Ni-O/Ni-Fe bilayer films,” Jpn. J. Appl. Phys., Vol. 35, pp. L1585-L1588, 1996.
[29]O. Kohmoto, H. Nakagawa, F. Ono, A. Chayahara, “Ni-defective value and resistivity of sputtered NiO films,” J. Magn. Magn. Mater., Vol. 226-230, pp. 1627-1628, 2001.
[30]張青蓮, 無機化學叢書,第九卷:錳分族、鐵系、鉑系, 北京科學出版社, p. 360.
[31]Hongbin Wu and Lai-Sheng Wang, “A study of nickel monoxide (NiO), nickel dioxide (ONiO), and Ni(O2) complex by anion photoelectron spectroscopy,” J. Chem. Phys., Vol. 107, pp. 16-21, 1997.
[32]G. P. Sykora, T. O. Mason, “Defect studies above 1 atm oxygen: NiO and CoO, ”Am. Ceram. Soc.: Nonstoichiometric compounds, Vol. 23, p. 45, 1987.
[33]B. Sasi, K. G. Gopchan ran, P. K. Manoj, P. Koshy, “Preparation of transparent and semiconducting NiO films,” J. Vac. Sci. Technol. A, Vol. 68, pp. 149-154, 2002.
[34]Hao-Long Chen, Yao-Sheng Yang, “Effect of crystallographic orientations on electrical properties of sputter-deposited nickel oxide thin films,” Thin Solid Films, Vol. 516, pp. 5590-5596, 2008
[35]B. D. Cullity, S. R. Stock, “Elements of X-ray diffraction,” 3rd edition, Prentice Hall, p. 48, 2001.
[36]W. C. Yeh, M. Matsumura, “Chemical vapor deposition of nickel oxide films from bis-π-cyclopentadienyl-nickel,” Jap. J. Appl. Phys, Vol. 36, pp. 6884-6887, 1997.
[37]I. Hotový, D. Búc, “Characterization of NiO thin films deposited by reactive sputtering,” J. Vac. Sci. Technol. A, Vol. 50, pp. 41-44, 1998.
[38]J. L. Yang, Y. S. Lai, J. S. Chen, “Effect of heat treatment on the properties of non-stoichiometric p-type nickel oxide films deposited by reactive sputtering,” Thin Solid Films, Vol. 488, pp. 242-246, 2005.
[39]Marek Guziewicz et al. “Electrical and optical properties of NiO films deposited by magnetron sputtering,” Optica Applicata, Vol. 9, pp. 431-440, 2011.
[40]J. Keraudy et al. “Structural, morphological and electrical properties of nickel oxide thin films deposited by reactive sputtering,” Appl. Surf. Sci., Vol. 357, pp. 838-844, 2015.
[41]H. J. Kim, J. W. Bae, J. S. Kim, K. S. Kim, Y. C. Jang, G. Y. Yeom, and N. E. Lee, “Electrical, optical, and structural characteristics of ITO thin films by krypton and oxygen dual ion-beam assisted evaporation at room temperature,” Thin Solid Films, Vol. 377-378, pp. 115-121, 2000.
[42]J. Tauc, R. Griogorovici an A. Vaucu, “Optical properties and electronic structure of amorphous germanium,” Phys. Stat. Sol., Vol. 15, pp. 627-637, 1966.
[43]M. Gratzel, “Heterogeneous photochemical electron transfer ,” CRC Press, 1989.
[44]J. Pelleg, L. Z. Zevin, S. Lungo, “Reactive-sputter-deposited TiN films on glass substrates,” Thin Solid Films, Vol. 197, pp. 117-128, 1991.
[45]M.M. El-Nahass , M. Emam-Ismail , M. El-Hagary, “Structural, optical and dispersion energy parameters of nickel oxide nanocrystalline thin films prepared by electron beam deposition technique,” J. Alloys Compd, Vol. 646, pp. 937-945, 2015.
[46]Ayana Ghosh, Cayla M. Nelson, Lina S. Abdallah, and Stefan Zollner, “Optical constants and band structure of trigonal NiO,” J. Vac. Sci. Technol. A, Vol. 33, p. 061203, 2015.
[47]N. F. Mott and M. J. Littleton, “Conduction in polar crystals. I. electrolytic conduction in solid salts,” J. Chem. Soc., Perkin Trans. 2, Vol. 85, pp.565-579, 1989.
[48]C. R. A. Catlow, W. C. Mackrodt, M. J. Norget and A. M. Dtoneham, “The basic atomic process of corrosion I. Electronic conduction in MnO, CoO and NiO,” Philosophical Magazine, Vol. 35, pp. 177-187, 1977.

無法下載圖示 全文公開日期 2021/06/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE