簡易檢索 / 詳目顯示

研究生: 杜順安
Shuen-an Tu
論文名稱: 3-D FEM:植體膺復之偏心及傾斜負荷應力分析
3-D FEM:Stress Analysis of Implant Supported Restoration under Eccentric and Oblique Force
指導教授: 曾垂拱
Chwei-goong Tseng
口試委員: 趙振綱
Chen-kang Chao
石淦生
Kan-sheng Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 125
中文關鍵詞: 有限元素植體膺復傾斜偏心
外文關鍵詞: oblique, eccentric, implant, FEM
相關次數: 點閱:293下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在探討植體受到偏心及傾斜負荷時植體周圍骨組織應力分佈的情形,以提供植體設計與臨床醫師膺復治療時的參考。利用x 光斷層圖及3D繪圖軟體建構出含有雙骨質的齒槽骨3D非軸對稱之有限元素模型。針對FRIALIT®-2SYNCHRO植牙系統的植體,以ANSYS 有限元素分析法模擬臨床咬合時的受力情形。分析結果顯示,咬合時的偏心距離及傾斜角度,決定了彎矩力臂長度,而彎矩力臂長短明顯影響齒槽骨內應力分布的情形,應力與力臂長度存在著線性關係。與植體頸部接觸的皮質骨通常承受最大的應力,而骨質較鬆的海綿骨則承受較小的應力。咬合面方向的改變,會使最大應力發生處跟著改變。改變齒冠高度會導致力臂長度變長,因此會使得最大應力值變大。


    The thesis mainly discusses the stress distribution in alveolus bone near the implant when the implant is subjected to eccentric and oblique loading, and the results can be provided to the dentists for designing implant restoration. The thesis uses the CAT and Computer Aided Design method to construct the three-dimensional model of finite element of alveolus bone which contains the cortical bone and cancellous bone and is nonaxial-symmetric. In the thesis, the implant of FRIALIT®-2SYNCHRO system is chosen for the simulated experiment, and used to simulated the situation of clinical occlusive force by using the ANSYS finite element method.
    From the results, it is showed that the eccentric distance and the incline angle will decide the length of bending arm. The bending arm influences stress distribution of alveolus bone near the implant in evidence. There exist a linear relationship between the maximum stress and the length of bending arm.
    The section of cortical bone that contacts with the neck of implant is generally subjected to the maximum stress, and the cancellous bone whose organization is loose is subjected to a smaller stress. Change the direction of occlusal surface will change the place of maximum stress. Increase the height of crown will increase the bending arm, it results in bigger maximum stress.

    中文摘要……………………………………………………………… I 英文摘要……………………………………………………………… II 誌 謝……………………………………………………………… III 目 錄……………………………………………………………… IV 圖表索引……………………………………………………………… VII 第一章 緒論………………………………………………………….. 1 1-1 前言…………………………………………………………. 1 1-2 研究計畫之背景目的………………………………………. 3 1-3 文獻回顧………………………………...………………...... 4 1-3-1 應力分佈研究方法……..………………………..….. 4 1-3-2有限元素應用的相關文獻……………………….…. 6 1-4 論文架構………………………………...………………...... 8 第二章 牙科植體概述……………………………………………….. 9 2-1 牙科植體的類型………………………………………......... 10 2-1-1 骨膜下種植體……………………………………...... 10 2-1-2 透骨式種植體……………………………………...... 11 2-1-3 骨內式種植體……………………………………...... 11 2-2 牙科植體材料………………………………………………. 12 2-2-1 金屬類…..……………………………………..…….. 13 2-2-2 陶瓷類……………………………………………….. 14 2-2-3 聚合物……………………………………………….. 16 2-3 植體的設計考量……………………………………………. 17 2-3-1 植體的幾何外型..……………………………..…….. 17 2-3-2 負荷的影響……..……………………………..…….. 18 2-3-3 骨質的考量..…………………………………..…….. 21 第三章 研究材料與方法…………………………………………….. 24 3-1 有限元素法基本原理………………………………………. 25 3-1-1 有限元素法..…………………………………..…….. 25 3-1-2 求解方式比較………………………………..…….. 29 3-2 模型建構……………………………………………………. 31 3-2-1 齒冠模型的建構..……………………………..…….. 33 3-2-2 植體模型的建構..……………………………..…….. 35 3-2-3 齒槽骨模型的建構.……………………………..….. 37 3-3 模型分析……………………………………………………. 39 3-3-1模型的轉換……...……………………………..…….. 39 3-3-2元素的選用……...……………………………..…….. 41 3-3-3應力分析模式及材質設定…………………………… 43 3-3-4邊界條件設定………………………………………… 44 3-3-5網格化………………………………………………… 50 3-3-6求解…………………………………………………… 50 第四章 結果與討論………………………………………………….. 54 4-1 結果分析……………………………………………………. 54 4-1-1齒冠高7.5㎜咬合面朝舌側之應力分佈…………… 56 4-1-2齒冠高7.5㎜咬合面朝舌側之應力分佈…………… 71 4-1-3齒冠高7.5㎜咬合面朝舌側之應力分佈…………… 86 4-2 結果討論……………………………………………………. 99 第五章 結論與未來展望…………………………………………….. 102 5-1 結論…………………………………………………………. 102 5-2未來展望………….…………………………………………. 103 參考文獻…………………..………………………………………….. 105 作者簡介……………..………………………………………………. 110

    參考文獻
    1. Bahat O, Handelsman M ”Use of wide implants and double implants in the posterior jaw. A clinical report”Int J Oral Maxillofac Implants, 11, pp.379-386, 1996.
    2. Carlsson L, Andesson B, Odman P, Branemark P-I.”A new Branemark single tooth abutment. Handing and early clinical experience”, Int J Oral Maxillofac, 7, pp.105-111, 1992.
    3. Chen CK, Shih KS, Peng TK, Yao JH, Dong YJ, Pai L.“ Assessment of periodontal disease in an adult population survey in Taipei city using CPITN and GPM/T indices” Chin Dental J, 9(2), pp.67-74, 1990.
    4. http://www.dentalshow.com.tw/guest/columnist/viewcolumndoc.asp?sno=161
    5. http://www.jgc-dent.com.tw/
    6. Brankemark P., Zarb Ga., Albrektsson T.,“Tissue-integrated prostheses osseointegration in clinical dentistry”,Chicago quintessence, pp.117-128, 1985.
    7. Assif D, Marshak B, Horowitz A. Analysis of load transfer and stress distribution by an implant-supported fixed partial denture. Journal of Prosthetic Dentistry 1996;75:285–91.
    8. Tashkandi EA, Lang BR, Edge MJ. Analysis of strain at selected bone sites of a cantilevered implant-supported prosthesis. Journal of Prosthetic Dentistry 1996;76:158–64.
    9. Richter E-J. In vivo horizontal bending moments on implants. International Journal of Oral and Maxillofacial Implants 1998;13: 232–44.
    10. Merickse-Stern R, Venetz E, Fahrlander F, Burgin W. In vivo force measurements on maxillary implants supporting a fixed prosthesis or an overdenture: a pilot study. Journal of Prosthetic Dentistry 2000;84:535–47.
    11. Brosh T, Pilo R, Sudai D. The influence of abutment angulation on strains and stresses along the implant/bone interface: comparison between two experimental techniques. Journal of Prosthetic Dentistry 1998;79:328–34.
    12. 董玉英,“人工種植牙生物力學研究進展”,中國口腔種植學雜誌,V.4, N.1, 1999。
    13. Rieger MR, Fareed K, Adams WK,Tanquist RA. “Bone stress distribution for three endosseous implant”, J Prosthet Dent, 61, pp.223-228, 1989a.
    14. Rieger MR, Mayberry M, Brose MO.“Finite element analysis of six endosseous implant”, J Prosthet Dent, 63, pp.671-676, 1990b.
    15. 李金聰 “九種骨內牙科植體的有限元素應力分析”, 國防醫學院牙醫科學研究所論文, 1996。
    16. Rajaai SM, Khorrami-mehr S. “Stress analysis on the bone around five different dental implnats”, Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE, 3, pp.2995-2997, 2001.
    17. Meijer HJ, Starmans FJ, Bosman F, Steen WH,“A comparison of three finite element models of an edentulous mandible provided with implant”, J Oral Rehabil, 20, pp.147-157, 1993.
    18. Stegaroiu R, Kusakari H, Nishiyama S, Miyakawa O. Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis. International Journal of Oral and Maxillofacial Implants 1998;13:781–90.
    19. Merz BR, Hunenbart S, Belser UC. Mechanics of the implantabutment connection: an 8-degree taper compared to a butt joint connection. International Journal of Oral and Maxillofacial Implants 2000;15:519–26.
    20. Hans VO, Joke D, Jos VS, Georges VP, Igmace N, “Peri-implant bone tissue strains in case of dehiscence: A finite element study”, Clin. Oral Impl. Res., 13, pp.327-333, 2002.
    21. K1vanc A, Murat CC, Haldun I, “Evaluation of the mechanical characteristics of the implant-abutment complex of a reduced-diameter more-taper implant: A nonlinear finite element stress analysis”, Clin. Oral Impl. Res., 14, pp.444-454, 2003.
    22. Akca K, Cehreli MC, Iplikcioglu H. Evaluation of the mechanical characteristics of a reduced-diameter morse taper implant: a nonlinear finite element stress analysis. Clinical Oral Implants Research 2003; in press.
    23. Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E.The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. J Prosthet Dent. 2004 Feb;91(2):144-50.
    24. Geramy A, Morgano SM. Finite element analysis of three designs of an implant-supported molar crown. J Prosthet Dent. 2004 Nov;92(5):434-40.
    25. Cranin AN ”Oral Implantology”, Springfield, Ill. Thomas, 1970.
    26. 姚振華,“牙科公共衛生學”,國立編譯館, 第359頁~第360頁, 民國90年。
    27. Kibrick M, Munir ZA, Lash H, Fox SS.“ The development of a material system for an endosteal tooth implant”, J Oral Implant, 6, pp.172-192, 1975.
    28. Kibrick M, Munir ZA, Lash H, Fox SS.“ The development of a material system for an endosteal tooth implant.II. In vitro and in vivo evaluations of a new composite-material design”, J Oral Implant, 7, pp.106-123, 1977.
    29. Mild EE. ,Bannon BP ”Titanium alloys for biomaterial applications–An overview” Presented at A.S.T.M.-sponsored symposium, Phoenix, 1981.
    30. 呂國富,”人工植牙臨床上生物機械學的考量”, 臨床口腔植體學, 日毅企業有限公司, 第119頁~第125頁, 民國88年。
    31. 鐘國雄,”牙科材料學”,合記書局, 第437頁~第447頁, 民國90年。
    32. Kay C. Dee , David A. Puleo , Rena Bizios, “An Introduction to Tissue-Biomaterial Interactions”, Wiley-Liss, pp.1-12, 2002.
    33. Robbins,Kumar原著 蔡光超、王世晞..等人編譯,”基礎病理學”,藝軒,1992.
    34. Sabiston,Jr. /Lyerly 著 梁金銅編譯,”莎氏外科學精要”,藝軒,1997.
    35. 于仲元主編,”血液淨化”,淑馨,1993.

    36. H.C.Hsu, S.K. Yen,; Evaluation of metal ion release and corrosion resistance of ZrO2 thin coatings on the dental Co-Cr alloys; Dent Mater 14:339-346,September, 1998.
    37. L. L. Hench and E. C. Ethridge, “Biomaterial” A cademic Press. Inc. (1982)
    38. 洪敏雄,林峰輝,王盈錦,”生醫陶瓷” 陶瓷技術手冊(下) 中華民國產業科技發展協進會 (1994)
    39. G. Daculsi, “Biotechnology for Calcium Phosphate Bioactive Ceramics in Bone Repair” The Chinese Society for Materials, 1999 Annual Meeting Workshop(1999)
    40. X. Nie, A. Leyland and A. Matthews, Surf. Coat. Technol. V.125, p.407-414(2000)
    41. J. M. Gomez-Vega, E. Saiz, A. P. Tomsia, G. W. Marshall and, S. J. Marshall, Biomaterials, V. 21, p.105-111 (2000)
    42. S. K. Yen, Mater. Chem. Phys., V.63 p.256-262 (2000)
    43. 張正忠, 李勝揚, “選擇人工植牙系統時之骨質密度考量”,中華牙醫學會訊, N.157, 第40頁~第43頁, 民國89年。
    44. Shih-yun Wu,Yu-lin Lai,Li-jane Ling, “Considerations about bone gualities of jaw bone for dental implant therapy”, Chin J Periodontology, V.8, N.4, pp.259-262, 2003.
    45. Weinberg L, Kruger B. An evaluation of torque (moment) on implant/prosthesis with staggered buccal and lingual offset. International Journal of Periodontics and Restorative Dentistry 1996;16:252–65.
    46. 許文賢,”脛骨骨髓內釘之有限元素分析”,國立台灣科技大學機械工程研究所論文, 2002.
    47. Saeed Moaveni, “Finite element analysis :/theory and application with ANSYS”, Prentice Hall, pp.1-6,1999.
    48. 賴育良,林啟豪,謝忠祐,”ANSYS 電腦輔助工程分析”,儒林圖書,第5頁~第12頁,民國86年。
    49. 吳立德,“3-D不同尺寸的人工牙根植體之應力分析”,私立台北醫學院口腔復健醫學研究所論文,1999.
    50. A.Norman Cranin ,Michael Klein,Alan simons. ”Atlas of Oral Implantology”, Mosby,2nd, pp.40~47,1999.
    51. Borchers L, Reichart P.”Three-dimensional stress distribution around a dental implant at different states of interface development”,J Dent Res, 62, pp.155-159,1983.
    52. Stegaroiu R,Kusakari H, Nishiyama S, Miyakawa O.“Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis”,Int J Oral Maxillofac Implants, 13, pp.781-790,1998.
    53. Sertgoz A.”Finite element analysis study of the effect of superstructure material on stress distribution in an implant-supported fixed prosthesis”Int J Prosthodont,10, pp.19-27, 1997.
    54. 蔡佩龍, “三維有限元素分析補綴物連結與否對植體旁骨內應力及應變的影響”, 國立台灣大學牙醫科學研究所論文,1998。

    QR CODE