簡易檢索 / 詳目顯示

研究生: 張敏華
Min-Hua Chang
論文名稱: 非集中式多重存取資源預留在無線區域網路中提供VoIP服務之研究
A Decentralized Coordination Packet Reservation Multiple Access (DC-PRMA) Protocol for VoIP Service in Wireless LAN
指導教授: 陳金蓮
Jean-Lien Chen Wu
口試委員: 鄭瑞光
Ray-Guang Cheng
吳靜雄
Jing-shown Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 71
中文關鍵詞: 無線區域網路
外文關鍵詞: DC-PRMA, Voice over WLAN, Voice over Internet Protocol, Decentralized Coordination PRMA
相關次數: 點閱:182下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過無線區域網路提供語音服務已成為一個相當重要的網路服務,相較於傳統公眾電信交換網路(Public Swhiched Telephone Network, PSTN),利用IP網路提供語音服務(Voice over Internet Protocol, VoIP)可以大幅地降低通訊成本。然而現有的IEEE 802.11b無線網路所能提供的話務量(voice calls)極為有限,因此如何讓IEEE 802.11b無線網路在不影響數據服務之下提供更多的話務量,是一個相當重要的議題。
    本篇論文中,我們延續多重存取資源預留(Packet Reservation Multiple Access, PRMA)的方法,提出『非集中式多重存取資源預留』(Decentralized Coordination Packet Reservation Multiple Access, DC-PRMA)的機制,將無線網路的資源以時間為依據,劃分成許多的超訊框(superframe),而每一個超訊框又劃分成語音與資料兩個部分,語音部分提供語音的資源預留,資料部分則依循IEEE 802.11的分散式資源存取(Distributed Coordinator Function, DCF)方式。DC-PRMA除了致力於提供更多的話務量外,我們也考慮到無線網路現存的問題與特性,如:行動台(mobile nodes)因地域不同的關係,產生隱藏點的問題(hidden terminal problem)、行動台因通訊品質的差異性而使用多種傳輸率(multi-rate characteristic)。經由模擬的結果,相較於IEEE 802.11b的資源存取機制,我們可以看出本機制能提供較多的話務量(voice calls)與較好的語音品質,因此DC-PRMA比IEEE 802.11b的資源存取方式更適合於無線區域網路中提供語音服務。


    Voice over Internet Protocol (VoIP) in wireless local area network (WLAN) is an emerging Internet application. VoIP services provide lower cost than Public Swhiched Telephone Network (PSTN).
    This thesis proposes the Decentralized Coordination Packet Reservation Multiple Access (DC-PRMA) scheme to increase the number of voice calls that can be supported in WLAN. DC-PRMA extends the concept of the Packet Reservation Multiple Access (PRMA) in WLANs. In DC-PRMA, wireless channel is divided into superframes. A superframe is the composite of voice phase and data phase. Voice phase provides reservation resources for voice users. Users in data phase access channel by the Distributed Coordinator Function (DCF) mechanism. Consider the potential hidden terminal problem and multi-rate characteristic in WLAN, an adaptive slot reservation is employed in DC-PRMA. The performance of DC-PRMA is investigated by computer simulations in comparison with legacy IEEE 802.11. The results show that the DC-PRMA scheme can indeed provide more voice calls than legacy IEEE 802.11 while the QoS requirements of voice calls are guaranteed.

    Chapter 1. Introduction ……………………………………………………… 1 1.1 Voice over WLAN ………………………………………………………1 1.2 Voice quality …………………………………………………………… 6 Chapter 2. Relative Work ……………………………………………………… 9 2.1 IEEE 802.11 …………………………………………………………… 9 2.2 Hidden terminal problem ……………………………………………… 14 2.3 The PRMA mechanism ……………………………………………… 15 Chapter 3. DC-PRMA Mechanism ………………………………………… 19 3.1 Description of DC-PRMA mechanism ……………………………… 19 3.2 Synchronization ……………………………………………………… 25 3.3 Determining the duration time of a slot ……………………………… 27 3.4 Bitmap of DC-PRMA …………………………………………………… 32 3.5 Solution for the hidden terminal problem ……………………………… 38 3.6 Example of DC-PRMA ………………………………………………… 42 3.7 Bitmap table recovery ………………………………………………… 45 Chapter 4. Performance Evaluation ………………………………………… 46 4.1 Simulation model and assumption …………………………………… 46 4.2 Simulation results …………………………………………………… 48 Chapter 5. Conclusions ………………………………………………………… 63 References …………………………………………………………………… 65

    [1] B. Goode, “Voice over Internet protocol (VoIP),” Proc. of the IEEE, vol. 90, issue 9, Sept. 2002, pp. 1495-1517.
    [2] A. S. N. M. Isabel, “Wireless Networks for the Developing World: The Regulation and Use of License-Exempt Radio Bands in Africa,” Proc. of TPRC 2004, June 2004.
    [3] D. Lenton, “Speaking of Wi-Fi,” IEE Review, vol. 49, issue 7, July 2003, pp. 44-47.
    [4] T. Nguyen, F. Yegenoglu, A. Sciuto, and R. Subbarayan, “Voice over IP service and performance in satellite networks,” IEEE Communications Magazine, vol. 39, issue 3, Mar. 2001, pp. 164-171.
    [5] N. P. Chung, L. S. Chang, and W. Wei, “Voice over wireless LAN via wireless distribution system,” Proc. of IEEE VTC 2004, vol. 4, Sept. 2004, Los Angeles, CA, USA, pp. 2564-2567.
    [6] J. D.Gibson, and B. Wei, “Tandem voice communications: digital cellular, VoIP, and voice over Wi-Fi,” Proc. of IEEE GLOBECOM 2004, Dec. 2004, vol. 2, Dallas, Texas, USA, pp. 617-621.
    [7] 王韻筑, “VoIP向前走-VoIP市場發展剖析,”工研院經資中心, Feb. 2004.
    [8] ITU-T Rec. G.800, “Methods for subjective determination of transmission quality,” Aug. 1996.
    [9] ITU-T Rec. G.107, “The E-model, a computational model for use in transmission planning,” Mar. 2003.
    [10] A. Estepa, R. Estepa, and J. M. Vozmediano, “On the suitability of the E-model to VoIP networks,” Proc. of IEEE ISCC 2002, July 2002, Taormina, ITALY, pp. 511-516.
    [11] J. H. James, C. Bing, and L. Garrison, “Implementing VoIP: a voice transmission performance progress report,” IEEE Communications Magazine, July 2004, vol. 42, issue 7, pp. 36-41.
    [12] L. Ding, and R. A. Goubran, “Speech quality prediction in VoIP using the extended E-model,” Proc. of IEEE GLOBECOM 2003, Dec. 2003, San Francisco, California, vol. 7, pp. 3974-3978.
    [13] L. Ding, and R. A. Goubran, “Assessment of effects of packet loss on speech quality in VoIP,” Proc. of IEEE HAVE 2003, Sept. 2003, Ottawa, Ontario, Canada, pp. 49-54.
    [14] ITU-T Rec. G.114, “One-way transmission time,” May 2000.
    [15] ITU-T SG12 D.106, “ITU-T SG12 Estimates of Ie and Bpl for a range of Codecs,” Jan. 2003.
    [16] Cisco,” Understanding Codecs: Complexity, Hardware Support, MOS, and Negotiation, “Technical Report, Mar. 2005. http://www.cisco.com/
    [17] IEEE 802.11 W.G., “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification,” IEEE Std. 802.11, Aug. 1999.
    [18] IEEE 802.11 W.G., “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification: Higher-speed physical layer extension in the 2.4GHz band,” IEEE Std. 802.11b, Sept. 1999.
    [19] W. Wei, S. C. Liew, P. Qixiang, and V. O. K. Li, “A Multiplex-Multicast Scheme that Improves System Capacity of Voice-over-IP on Wireless LAN by 100%,” Proc. of IEEE ICC 2004, June 2004, Alexandria, Egypt, vol. 1, pp. 472-477.
    [20] L. Anders, A. Andreas, and S. Olov, “Quality of service schemes for IEEE 802.11 wireless LANs: an evaluation,” Mobile Networks and Applications of the ACM, June 2003, vol. 8, issue 3, pp. 223-235.
    [21] A. Köpsel, and A. Wolisz, “Voice transmission in an IEEE 802.11 WLAN based access network,” Proc. of ACM WMM 2001, July 2001, Rome, Italy, pp. 23-32.
    [22] E. Ziouva, and T. Antonakopoulos, “Improved IEEE802.11 PCF performance using silence detection and cyclic shift on stations polling,” IEE Proceedings- Communications, Feb. 2003, vol. 150, issue 1, pp. 45-51.
    [23] M. Xiyan, D. Cheng, and N. Zhisheng, “Adaptive polling list arrangement scheme for voice transmission with PCF in wireless LANs,” Proc. of IEEE MDMC 2004, Sept. 2004, Beijing, China, vol. 1, pp. 21-25.
    [24] K. Y. Jae, and S. Y. Joo, “Adaptive polling MAC schemes for IEEE 802.11 wireless LANs supporting voice-over-IP (VoIP) services,” Wireless Communications and Mobile Computing, Dec. 2004, vol. 4, issue 8, pp. 903-916.
    [25] IEEE 802.11e W.G., “Draft Supplement to Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC) Enhancements for Quality of Service (QoS),” IEEE Std. 802.11e/D4.0, Nov. 2002.
    [26] M. Xiyan, Z. Yanfeng, and N. Zhisheng, “Dynamic polling management for QoS differentiation in IEEE 802.11e wireless LANs,” Proc. of IEEE MDMC 2004, Sept. 2004, Beijing, China, vol. 1, pp. 152-156.
    [27] C. Sunghyun, P. Javier del, S. Shankar N, and S. Mangold, “IEEE 802.11e contention-based channel access (EDCF) performance evaluation,” Proc. of IEEE ICC 2003, May 2003, Anchorage, Alaska, USA, no. 1, pp. 1151-1156.
    [28] S. Mangold, C. Sunghyun, R. H. Guido, O. Klein, and W. Bernhard, “Analysis of IEEE 802.11e for QoS support in wireless LANs,” IEEE Wireless Communications, Dec. 2003, vol. 10, no. 6, pp. 40-50.
    [29] X. Yang, and L. Haizhon, “Evaluation of distributed admission control for the IEEE 802.11e EDCA,” IEEE Communications Magazine, Sept. 2004, vol. 42, issue 9, pp. 20-24.
    [30] S. G. Matthew, 802.11 wireless Networks: The Definitive Guide, O’Reilly, 1st edition, Apr. 2002.
    [31] D. J. Goodman, R. A. Valenzuela, K. T. Gayliard, and B. Ramamurthi, “Packet reservation multiple access for local wireless communications,” IEEE Transactions on Communication, Aug. 1989, vol. 37, pp. 885-890.
    [32] D. J. Goodman, and S. X. Wei, “Efficiency of packet reservation multiple access,” IEEE Transactions on Vehicular Technology, Feb. 1991, vol. 40, issue: 1, pp. 170-176.
    [33] F. L. Presti, and V. Grassi, “Markov analysis of the PRMA protocol for local wireless networks,” Wireless Networks of the ACM, July 1998, vol. 4, issue 4, pp. 297-306.
    [34] S. Elnoubi, and A. M. Alsayh, “A packet reservation multiple access (PRMA)-based algorithm for multimedia wireless system,” IEEE Transactions on Vehicular Technology, Jan. 2004, vol. 53, issue 1, pp. 215-222.
    [35] S. Nanda, D. J. Goodman, and U. Timor, “Performance of PRMA: a packet voice protocol for cellular systems,” IEEE Transactions on Vehicular Technology, Aug. 1991, vol. 40, issue 3, pp. 584-598.
    [36] P. Narasimhan, and R. D. Yates, “A new protocol for the integration of voice and data over PRMA,” IEEE Journal on Selected Areas in Communications, May 1996, vol. 14, issue 4, pp. 623-631.
    [37] G. Colombo, L. Lenzini, E. Mingozzi, B. Cornaglia, and R. Santaniello, “Extended performance evaluation of PRADOS: a scheduling algorithm for traffic integration in a wireless ATM network,” Wireless Networks of the ACM, May 2002, vol. 8, issue 2/3, pp. 265-274.
    [38] Y. C. Yan, L. M. Li, and D. Xue, “Slot assignment of spatial TDMA in ad hoc radio networks using fuzzy set theory,” Proc. of IEEE MWC 2004, June 2004, Shanghai, China, vol. 2, pp. 497-500.
    [39] F. N. Ali, P. K. Appani, J. L. Hammond, V. V. Mehta, D. L. Noneaker, and H. B. Russell, “Distributed and adaptive TDMA algorithms for multiple-hop m tworks,” Proc. of IEEE MILCOM , Oct. 2002, Anaheim, CA, USA, vol. 1, pp. 546-551.
    [40] P. Koutsakis, and M. Paterakis, “Highly efficient voice-data integration over medium and high capacity wireless TDMA channels,” Wireless Networks of the ACM, Jan. 2001, vol. 7, issue 1, pp. 43-54.
    [41] A. Giuseppe, G. Davide, L. Luciano, and M. Enzo, “A contention/reservation access protocol for speech and data integration in TDMA-based advanced mobile systems,” Mobile Networks and Applications of ACM, June 1997, vol. 2, issue 1, pp. 3-18.
    [42] A. D. Deborah, and J. H. Zygmunt, “A dynamic packet reservation multiple access scheme for wireless ATM,” Mobile Networks and Applications of the ACM, May 1999, vol. 4, issue 2, pp. 87-99.
    [43] Y. K. Kwok, and K. N. L. Vincent, “A quantitative comparison of multiple access control protocols for wireless ATM,” IEEE Transactions on Vehicular Technology, May 2001, vol. 50, issue 3, pp.796-815.
    [44] S. Jiang, J. Rao, D. He, X. Ling, and C. K. Chi, “A simple distributed PRMA for MANETs,” IEEE Transactions on Vehicular Technology, Mar. 2002, vol. 51, issue 2, pp. 293-305.
    [45] A. Mehdi, and F. Nariman, “D-PRMA: a dynamic packet reservation multiple access protocol for wireless communications,” Proc. of ACM MSWiM 1999, Aug. 1999, pp. 41-49.
    [46] M. Thomas, and D. J. Goodman, “Multi-rate PRMA: a time division protocol for adjustable bit-rate sources,” Proc. of IEEE VTC 1997, May 1997, Phoenix, AZ, USA, vol. 3, pp. 1360-1364.
    [47] “The Network Simulator - ns2,” http://www.isi.edu/nsnam/ns.
    [48] “NS2 Learning Guide,” http://140.116.72.80/~smallko/ns2/ns2.htm.
    [49] T. Kawata, S. Sangho, and A. G. Forte, “Using dynamic PCF to improve the capacity for VoIP traffic in IEEE 802.11 networks,” Proc. of IEEE WCNC 2005, Mar. 2005, New Orleans, Louisiana, vol. 3, pp. 1589-1595.
    [50] S. A. Rasheed, K. Masnoon, N. Thanthry, and R. Pendse, “PCF vs DCF: a performance comparison,” Proc. of IEEE SSST 2004, Mar. 2004, Atlanta, Georgia, pp. 215-219.
    [51] C. Li, J. Li, and X. Cai, “Performance analysis of IEEE 802.11 WLAN to support voice services,” Proc. of IEEE AINA 2004, Mar. 2004, Fukuoka, Japan, vol. 2, pp. 343-346.
    [52] E. Ziouva, and T. Antonakopoulos, “CBR packetized voice transmission in IEEE802.11 networks,” Proc. of IEEE SCC 2001, July 2001, Hammamet, Tunisia, pp. 392- 98.
    [53] S. Garg, and M. Kappes, “An experimental study of throughput for UDP and VoIP traffic in IEEE 802.11b networks,” Proc. of IEEE WCN, Mar. 2003, New Orleans, Loaisiana, USA, vol. 3, pp. 1748-1753.
    [54] D. P. Hole, and F. A. Tobagi, “Capacity of an IEEE 802.11b wireless LAN supporting VoIP,” Proc. of IEEE ICC 2004, June 2004, Paris, France, vol. 27, no. 1, pp. 196-201.
    [55] M. Veeraraghavan, N. Cocker, and T. Moors, “Support of voice services in IEEE 802.11 wireless LANs,” Proc. of IEEE INFOCOM 2001, April 2001, Anchorage, Alaska, no. 1, pp. 488-497.
    [56] C. Dongyan, G. Sachin, K. Martin, and S. T. Kishor, “Supporting VoIP Traffic in IEEE 802.11 WLAN with Enhanced Medium Access Control (MAC) for Quality of Service,” Technical Report ALR-2002-025, Avaya Labs, 2002.
    http://www.research.avayalabs.com/techreportY.html
    [57] G. Sachin, and K. Martin, “Can I add a VoIP call,” Proc. of IEEE ICC 2003, May 2003, Anchorage, Alaska, USA, no. 1, pp. 779-783.
    [58] F. Anjum, M. Elaoud, D. Famolari, A. Ghosh, R. Vaidyanathan, A. Dutta, P. Agrawal, T. Kodama, and Y. Katsube, “Voice performance in WLAN networks--An experimental study,” Proc. of IEEE GLOBECOM 2003, Dec. 2003, San Francisco, CA, USA, no. 1, pp. 3504-3508.
    [59] W. Wei, S. C. Liew, and V. O. K. Li, “Solutions to performance problems in VoIP over a 802.11 wireless LAN,” IEEE Transactions on Vehicular Technology, Jan. 2005, vol. 54, issue 1, pp. 266-384.
    [60] T. S. Rappaport, Wireless Communications Principles and Practice, Prentice-Hall, 2st edition, Jan. 2002.
    [61] ITU-T Rec. G.729, “Coding of speech at 8 kbit/s using conjugate-structure algebraic- code-excited linear-prediction (CS-ACELP),” Mar. 1996.
    [62] R. J. Punnoose, P. V. Nikitin, and D. D. Stancil, “Efficient Simulation of Ricean Fading within a Packet Simulator,” Proc. of IEEE VTC 2000, Step. 2000, Tokyo, Japan, pp. 764-767.

    QR CODE