簡易檢索 / 詳目顯示

研究生: 陳奕雯
Yi-Wen Chen
論文名稱: 3D列印阻燃結構之研究
Study on 3D printing flame retardant structures
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 葉樹開
Shu-Kai Yeh
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 100
中文關鍵詞: 阻燃結構設計3D列印材料擠製成型
外文關鍵詞: Flame Retardant Structure Design, 3D Printing, Material Extrusion
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前因傳統減法製造技術無法製作複雜之內部結構,市面上的防火材料多為實心板材,且較少有研究指出內部結構對阻燃性能的影響與趨勢為何,因此本研究利用材料擠出成形法3D列印,來製作具形狀偏移設計之阻燃結構,透過改變結構內部形狀與排列,使其在受燃燒時能迅速形成穩定炭層,隔絕火焰與抑制可燃氣體進入,使其達到與實心板材相似之阻燃效果,但同時又能節省材料用量。
    因阻燃材料性質與一般3D列印材料不同,需找到較適當之列印參數,使列印成品具有較佳的品質後,再透過調整內部填充形狀、內部填充密度、切層厚度與外部實心層厚度來得到具有不同特性的樣品後進行燃燒實驗測試,觀察其對於阻燃性能的效益與趨勢,由測試結果發現在同樣結構條件下影響阻燃性之根本原因為材料量,若物體的材料量太少而不足以產生焦炭時則對火焰的抵抗力較差,使表面破孔情況較嚴重。若材料量太多時,雖然能改善表面破孔情況,但會產生嚴重的形狀變形與膨脹。最終本研究設計出偏移的阻燃結構,並以燃燒實驗檢測來驗證其阻燃效果,其中三角形阻燃結構效果較佳,能加強對火焰的抵抗性且可應用於其他可燃物品上作為保護層,改善可燃物體之防火性。


    At present, traditional subtractive manufacturing techniques can not produce complex internal structures. Most of the fireproof materials on the market are solid plates, and rare studies have pointed out the influence and trend of internal structure on flame retardant performance. Therefore, this study uses material extrusion molding 3D printing to produce a flame retardant structure with a shape offset design. By varying the shape and arrangement of the internal structure, so that it can quickly form a stable char layer when it is burned, insulates the flame and inhibits the entry of flammable gases, it achieves a flame retardant effect similar to a solid sheet and saves material usage.
    Because the properties of the flame retardant material are different from those of the general 3D printing materials, it is necessary to find suitable printing parameters to make the printed product have better quality, and then adjust the infill pattern, the infill density, the primary layer height and the external solid layer to obtain the sample with different characteristics and then perform a combustion test. Observing the benefits and trends of flame retardant performance, the main reason effect of the flammability under the same structural conditions was found to be the amount of material. If the amount of material of the object is too small to produce char, the resistance to the flame is poor, it will cause the surface broken severely. If the amount of material is too large, although the surface breakage can be improved, severe shape deformation and expansion will occur. Finally, this study designed the offset flame retardant structure and verified its flame retardant effect by combustion test. The triangular flame retardant structure has better effect, can enhance the resistance to flame and can be applied to other combustible materials as protection layer to improve the fire resistance of flammable objects.

    第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 研究方法與步驟 4 1.4 論文架構 5 第二章 文獻探討 6 2.1 積層製造技術(ADDITIVE MANUFACTURING,AM) 6 2.1.1 光聚合固化技術(Vat Photopolymerization) 8 2.1.2 材料擠製成型技術(Material Extrusion) 9 2.1.3 材料噴塗成型技術(Material Jetting) 10 2.1.4 黏著劑噴塗成型技術(Binder Jetting) 12 2.1.5 粉體熔化成型技術(Powder Bed Fusion) 13 2.1.6 疊層製造成型技術(Sheet Lamination) 14 2.1.7 指向性能量沉積技術(Directed Energy Deposition) 15 2.2 阻燃材料(FLAME RETARDANT MATERIAL) 16 2.2.1. 高分子難燃原理[12] 16 2.2.2. 阻燃劑[12] 18 (一) 鹵素 (溴) 系阻燃劑[13][14][15] 20 (二) 磷系阻燃劑[16][17] 23 2.2.3. 3D列印防火相關研究 26 第三章 材料製備與燃燒實驗檢測方式 28 3.1 實驗材料 28 3.2 抽線機 29 3.3 熔融擠製成型3D列印機台 30 3.4 燃燒實驗檢測方法 31 3.4.1 UL94 HB等級燃燒試驗(Horizontal Burning Test)[23] 31 (一) 測試樣品: 31 (二) 測試程序: 32 3.4.2 UL94 V(V-0、V-1、V-2)等級燃燒試驗(Vertical Burning Test, V-0 / V-1 / V-2)[23] 33 (一) 測試樣品: 33 (二) 測試程序: 34 3.4.3 本研究使用之阻燃檢測方法 35 (一) 測試程序: 39 第四章 列印參數測試結果與討論 40 4.1 列印參數測試 40 4.2 INFILL列印參數對阻燃性能的影響與趨勢 48 4.2.1 內部填充形狀(Infill Pattern) 49 4.2.2 內部填充密度(Infill Density) 53 4.2.3 切層厚度(Primary Layer Height) 59 4.2.4 外部實心層厚度(External Solid Layer) 61 4.2.5 內部填充密度與外部實心層厚度 62 第五章 阻燃結構設計與應用 69 5.1 阻燃結構設計 69 5.2 應用與驗證 77 第六章 結論與未來研究方向 82 6.1 結論 82 6.2 未來研究方向 83

    [1] Gibson, I., Rosen, D.W., and Stucker, B. "Additive Manufacturing Technologies." (2010). New York: Spring 238.
    [2] Gibson, I., Rosen, D.W., and Stucker, B. Vat Photopolymerization, "Additive Manufacturing Technologies." (2010). New York: Spring 238.
    [3] Gibson, I., Rosen, D.W., and Stucker, B. Material Extrusion, "Additive Manufacturing Technologies." (2010). New York: Spring 238.
    [4] Stratasys Company History. Funding Universe.
    [5] Loughborough University. Material Jetting. ( http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/materialjetting/)
    [6] Material Jetting.
    ( http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/materialjetting/)
    [7] Gibson, I., Rosen, D.W., and Stucker, B. Binder Jetting, "Additive Manufacturing Technologies." (2010). New York: Spring 238.
    [8] Gibson, I., Rosen, D.W., and Stucker, B. Powder Bed Fusion, "Additive Manufacturing Technologies." (2010). New York: Spring 238.
    [9] Gibson, I., Rosen, D.W., and Stucker, B. Sheet Lamination, "Additive Manufacturing Technologies." (2010). New York: Spring 238.
    [10] Gibson, I., Rosen, D.W., and Stucker, B. Directed Energy Deposition, "Additive Manufacturing Technologies." (2010). New York: Spring 238.
    [11] Innes, A., and Innes, J. (2012). "Flame Retardants." Handbook of Environmental Degradation of Materials. 310-334.
    [12] 謝銘釗,2002,“高分子阻燃機制及物性之研究”,國立臺灣科技大學碩士論文
    [13] Babrauskas, V., Fuoco, R., and Blum, A. (2014). "Flame Retardant Additives in Polymers: When do the Fire Safety Benefits Outweigh the Toxicity Risks." Polymer Green Flame Retardants. 87-118.
    [14] Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.-M., and Dubois. (2009). "New Prospects in Flame Retardant Polymer Materials: from Fundamentals to Nanocomposites." Materials Science and Engineering R: Reports 63(3): 100-125.
    [15] Dasari, A., Yu, Z.-Z., Cai, G.-P., and Mai, Y.-W. (2013). "Recent Developments in the Fire Retardancy of Polymeric Materials." Progress in Polymer Science 38(9): 1357-1387.
    [16] Marosi, G., Szolnoki, B., Bocz, K., and Toldy, A. (2014). "Reactive and Additive Phosphorus-Based Flame Retardants of Reduced Environmental Impact." Polymer Green Flame Retardants. 181-220.
    [17] Hörold, S. (2014). "Phosphorus-Based and Intumescent Flame Retardants." Polymer Green Flame Retardants. 221-254.
    [18] Monsheimer, S., Grebe, M., Baumann, F.E. (2006) U.S. Patent NO. 0223928A1
    [19] Yichen, G., Chung-Chueh, C., Halada, G., Michael, A.C., Yuan, X., Xiangho, Z., Seongchan, P., Linxi, Z., Shan, H., Edward, W., Miriam, H.R. (2017). "Engineering flame retardant biodegradable polymer nanocomposites and their application in 3D printing. " Polymer Degradation and Stability.205-215.
    [20] Filabot EX2 Filament Extruder.
    (https://www.filabot.com/collections/filabot-core/products/filabot-original-ex2)
    [21] Filabot Spooler.
    (https://www.filabot.com/collections/filabot-core/products/filabot-spooler)
    [22] FlashForge 3D Printer.
    ( http://www.sz3dp.com/index.php?ac=article&at=read&did=489)
    [23] Underwriters Laboratories Inc., "UL Standard for Safety for Test for Flammability of Plastic Materials for Parts in Devices and Appliances,
    UL 94. " Fifth Edition, 1996.

    無法下載圖示 全文公開日期 2023/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE