簡易檢索 / 詳目顯示

研究生: 高士哲
Shih-Che Kao
論文名稱: 非穩態風速與矩形建築風載重機率模式之建立及可靠度分析
Development of Non-stationary Wind Speed Model and Surface Pressure Random Field Model and Their Applications in Reliability Analyses
指導教授: 陳瑞華
Rwey-Hua Cherng
口試委員: 鄭啟明
Chii-Ming Cheng
張景鐘
Jing-Jong Jang
黃慶東
Ching-Tung Huang
鄭蘩
Van Jeng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 120
中文關鍵詞: 隱藏式馬可夫鏈隨機域耐風可靠度
外文關鍵詞: Hidden Markov Chain, Random Field, Wind Resistant Reliability Analyses
相關次數: 點閱:266下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

進行可靠度評估前,需要分析極限狀態函數中各不確定性的機率特性。影響建築物耐風可靠度之不確定性可能源於風載重或結構特性,包括強風平均風速、表面風壓分布及建築物的自然頻率和阻尼比等;其中,表面風壓為空間和時間的函數。由於風載重的不確定性較顯著,因此,本研究的重點是探討如何以隨機域模擬表面風壓隨空間和時間的變化及以隱藏式馬可夫鏈(Hidden Markov Chain;HMC)模型模擬每日最大風速隨時間的變化,並以前述兩機率模型量化風載重的不確定性,應用於建築物耐風可靠度評估。
由於每日最大風速具非穩態特性,本文發展隱藏式馬可夫鏈模型來分析和模擬之;隱藏式馬可夫鏈模是由非穩態自迴歸模型和馬可夫鏈所構成。先將資料進行正規化和常態轉換,再根據貝氏分析演算法估計模型參數,其中每個參數在不同時間均為隨機變數。以實測平時風風速資料為例來驗證所提模型之準確性,數值模擬結果顯示人造資料與實測資料有近似的統計特性,所檢核的統計特性包括超越機率和非穩態行為。再以HMC模型為基礎,模擬產生長時間人造平時風風速資料,作為後續估計強風平均風速不確定性的基礎。
由於表面風壓隨時間和空間之變異具隨機性,可用隨機域來模擬之。以風洞試驗中一高寬比為6的方形建築模型的橫風向合成風壓資料為例來建立隨機域。橫風向合成風壓資料是合成兩側風面表面風壓資料,其具近似常態、空間非同質(nonhomogeneous)-時間弱穩態(weakly stationary)的特性。將橫風向合成風壓視為其標準偏差隨空間變化函數與模擬為正規化風壓的空間弱同質-時間弱穩態隨機域相乘。根據橫風向合成風壓資料建立其空間-時間交頻譜密度函數,並估計函數中的待定參數。若建築物模擬為連續系統,可直接使用所得隨機域作後續分析;若建築物模擬為離散多自由度系統,則需將所得隨機域離散化。本文採用局部空間平均法來離散隨幾域,推導離散後各區域風壓之交頻譜密度函數解析式。
說明建立隨機域的必要性,用隨機域量化表面風壓的不確定性後,以一垂直懸臂梁為例,推導由橫風向合成風壓所造成橫風向自由端加速度在強風作用延時內大於門檻值的機率解析式。
用前述兩機率模型分別量化強風平均風速和表面風壓的不確定性後,以一方形高層建築在承受 年強風平均風速作用下為例,估計由橫風向合成風壓所造成橫風向層間變位角在強風作用延時內大於門檻值的機率。以離散化多自由度線性系統作為結構分析模式,其阻尼比和自然頻率角頻率以隨機變數模擬之。由於橫風向合成風壓為時間的函數,使用快速積分法將極限狀態函數表示為條件超越機率的函數。配合蒙地卡羅模擬來估計層間變位角超越機率,得知在假設僅橫風向合成風壓具有不確定性,強風平均風速、阻尼比和自然頻率角頻率為平均值時,高模態廣義橫風向風力頻譜,要達到與低模態相同準確性,所需之離散區域須較小;較高門檻值下第1模態條件超越機率要達到與較低門檻值相同準確性,所需之離散區域須較小;條件超越機率若要達到與廣義橫風向風力頻譜相同準確性,所需的離散區域要更小。此案例分析結果顯示,若忽略強風平均風速的不確定性,在門檻值為 ,會大於未忽略時下超越機率的平均值,在門檻值 ,會小於未忽略時下超越機率的平均值。


The probability information on uncertain parameters in the limit-state function is required before reliability is evaluated. Uncertainties that are considered in evaluating structural reliability under wind loading could rise from wind loading or structure properties such as, surface pressure, strongly mean wind speed, natural frequency and damping ratio, in which surface pressure varies randomly with space and time. Due to the pronounced uncertainty of wind loading, developing a Hidden Markov Chain (HMC) model and random field model to characterize the variation in wind speed with time and that in surface pressure with space and time respectively is main part. The uncertainties of wind loading are quantified by using the previous two models, and then are used in evaluating structural reliability.

Wind speed time series are generally non-stationary, this research proposes a HMC to analyze field wind speed data and to simulate synthetic wind speed data. The recorded wind speed data is used to demonstrate the implementation of the proposed approach. It is shown that the statistical properties of the simulated data are very similar to those of the field data. Long-term synthetic wind speed data is generated based on HMC, and then is used to estimate the uncertainty of strongly mean wind speed.

Variation in surface pressure with space and time is random, this research proposes a random field model to simulate the uncertainty of surface pressure. The recorded surface pressure data is used to establish an analytical random filed model for across-wind integration pressure data. Across-wind integration pressure is characterized by a Gaussian, space nonhomogeneous and time weakly stationary random field. A function form of space-time cross-spectral density function of the random field is determined by analyzing integration pressure data, and the parameters in the function are estimated by fitting integration pressure data. If a building is modeled as a MDOF system, the random filed is discretized. Local average method is used to discretize the random field, and cross-spectral density analytical function of spatial averages is derived.

To show that developing random field is necessary, an analytical solution for the reliability of top acceleration of a cantilever beam which is represented by a linear continuous system subjected to across-wind integration pressure which is modeled as a random field is derived.

To show the previous two models’ application in reliability analyses, the reliability of interstory drift ratio of a building which is represented by a MDOF system subjected to across-wind integration pressure which is modeled as a random field is estimated considering uncertainties of parameters in the wind loading and structure properties. Because the across-wind integration pressure is the function of time, the limit-state function can be described by a function of conditional probability using fast integration method. The overall probability is estimated by using Monte-Carlo simulations. The numerical results are as follows:
1. If across-wind integration pressure is uncertain and strongly mean wind speed, natural frequency and damping ratio are equal to their mean values, the size of segment for high mode generalized across-wind force spectra is smaller than that of segment for low mode generalized across-wind force spectra to have the same accuracy for high mode and low mode generalized across-wind force spectra.
2. If across-wind integration pressure is uncertain and strongly mean wind speed, natural frequency and damping ratio are equal to their mean values, the size of segment for conditional probability in high threshold is smaller than that of segment for conditional probability in low threshold to have the same accuracy for high and low threshold.
3. For this example, the probability with negligence of the uncertainty of the strongly mean wind speed is larger than that with consideration of parameter uncertainties for thresholds of 0.005, 0.006 and 0.007; the probability with negligence of the uncertainty of the strongly mean wind speed is smaller than that with consideration of parameter uncertainties for a threshold of 0.008.

論文摘要 I ABSTRACT III 誌謝 V 目錄 VI 符號索引 X 表目錄 XV 圖目錄 XVI 第 1 章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 1 1.3 論文架構 2 第 2 章 風的基本性質及其作用在結構物上的力量 4 2.1 前言 4 2.2 大氣邊界層 4 2.3 平均風速的垂直分布模式 4 2.3.1 風速與高度之關係 5 2.3.2 風速與地表粗糙度之關係 6 2.4 大氣紊流 7 2.4.1 紊流強度 7 2.4.2 紊流積分尺度 8 2.4.3 紊流擾動風速頻譜 8 2.4.4 紊流擾動風速交頻譜 9 2.5 風作用在結構物上的力量 12 2.5.1 風速壓與風壓係數 12 2.5.2 均勻流所產生的力 12 第 3 章 機率密度函數和建築物動力特性參數不確定性之介紹 16 3.1 前言 16 3.2 機率密度函數 16 3.2.1常態分布(The normal distribution) 16 3.2.2對數常態分布(The logarithmic normal distribution) 17 3.2.3 極值型Ⅰ分布(The typeⅠdistribution) 17 3.2.4 指數分布(The exponential distribution) 18 3.3 建築物基本自然週期的不確定性 18 3.4 結構阻尼比的不確定性 20 3.5 小結 21 第 4 章 以隱藏式馬可夫鏈分析並模擬風速資料 24 4.1 前言 24 4.2 逐日各方向最大風速之決定 26 4.3 之前處理 27 4.3.1 資料正規化 28 4.3.2 年中逐日平均值的移除和常態轉換 28 4.4 隱藏式馬可夫鏈(HMC)模型之建立 29 4.4.1 之估算 31 4.4.2 人造資料 樣本之模擬 32 4.5 各方向人造風速與實測風速統計特性之比較 32 4.5.1 東方風速統計特性之比較 32 4.5.2 南方、西方和北方風速統計特性之比較 33 4.6 各方向年最大風速不確定性之估計 34 4.7 小結 35 第 5 章 表面風壓空間-時間隨機域之建立 44 5.1 前言 44 5.2 風載重模型之文獻回顧 44 5.3 空間-時間隨機域之介紹 46 5.3.1 空間-時間隨機域基本性質 46 5.3.2 空間弱同質-時間弱穩態隨機域之機率結構 48 5.3.3 空間弱同質-時間弱穩態隨機域之局部空間平均過程 50 5.3.4 空間弱同質-時間弱穩態隨機域離散之原則 52 5.4 橫風向合成風壓隨機域解析模型之建立 52 5.4.1 風洞試驗資料之介紹 53 5.4.2 橫風向合成風壓資料之特性 54 5.4.3 常態、空間非同質-時間弱穩態隨機域之建立 58 5.4.4 區域風壓交頻譜密度函數解析式之建立 61 5.5 小結 62 第 6 章 耐風可靠度分析 79 6.1 前言 79 6.2 時變可靠度分析方法之文獻回顧 79 6.3 快速積分法之介紹 82 6.4 建築物層間變位角超越機率分析 83 6.4.1 案例之陳述 83 6.4.2 結構分析模式之建立 83 6.4.3 系統參數不確定性之估計 87 6.4.4 廣義橫風向風力頻譜之估計 87 6.4.5 層間變位角條件超越機率解析式之推導 89 6.4.6 層間變位角超越機率之分析 93 6.5 垂直懸臂梁自由端加速度超越機率之推導 94 6.5.1 案例之陳述 94 6.5.2 結構分析模式之建立 95 6.5.3自由端加速度超越機率解析式之推導 97 6.6小結 99 第 7 章 結論與建議 110 7.1 結論 110 7.2 建議 112 參考文獻 113 附錄 120

中文部分
1. 內政部營建署,「建築物耐風設計規範及解說」,2007。
2. 李杰、陳建兵,「隨機結構動力反應分析的概率密度演化方法」,力學學報,第四期,第437-442頁(2003)。
3. 高士哲,「人造混合風速歷時在極值風速上之應用」,碩士論文,國立台灣科技大學營建工程系,(2004)。
4. 陳志昇,「人造颱風之模擬與台北測站風速之預測」,碩士論文,國立台灣科技大學營建工程系,(2011)。
5. 陳瑞華、卿建業、高士哲、徐偉誌,「以隱藏式馬可夫鏈分析並模擬風速資料」,中國土木水利工程學刊,第二十卷,第三期,第383-393頁(2008)。

英文部分
1. American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures, ASCE 7-05.
2. Andrieu-Renaud, C., Sudret, B., and Lemaire, M., “The PHI2 method: a way to compute time-variant reliability,” Reliability Engineering and System Safety, Vol. 84, pp. 75-86 (2004).
3. Ang, A. H-S., and Tang, W. H., Probability concepts in engineering planning and Design, VolⅠ, John Wiley and Sons (1975).
4. Architectural Institute of Japan, Recommendations for Loads on Buildings (2004).
5. AS/NZS 1170.2:2011, Australian/New Zealand Standard, Structural design action, Part2: Wind actions.
6. Balendra, T., Quek, S. T., and Teo, Y.R., “Time-variant reliability of linear oscillator considering uncertainties of structural and input model parameters,” Probabilistic Engineering Mechanics, Vol. 6, No. 1, pp. 10-17, 1991.
7. Bendat, J.S., and Piersol, A.G., Random data: analysis and measurement procedures, Wiley Inter-science, 2000.
8. Blanchard, M. and Desrochers, G., “Generation of autocorrelated wind speeds for energy conversion system studies,” Solar Energy, Vol. 33, pp. 571-579 (1984).
9. Bolotin, V.V., “Primenenie metodov teorii verovatnostei i teorii nadejnosti v raschetah soorujenni,” Izdatelstov Literaturi po Stroitelstvi, Moscow (1971).
10. Box, G.E.P. and Jenkins, G.M., Time series analysis, forecasting and control, San Francisco, Holden-Day (1976).
11. Brown, B.G., Kats, R.W., and Murphy, A.H., “Time series models to simulate and forecast wind speed and wind power,” Journal of Climate Applied Meteorology, Vol. 23, pp. 1184-1195 (1984).
12. Carter, C. K., and Kohn, R., “On Gibbs sampling for state space models” Biomertrika 81, pp. 541-553 (1994).
13. Chau, T., Chau, D., Casas, M., Berall, G., and Kenny, D.J., “Investigating the stationarity of paediatric aspiration signals,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 13, No. 1, pp. 99-105 (2005).
14. Cherng, R.-H., and Wen, Y. K., “Reliability of uncertain nonlinear trusses under random excitation.Ⅱ,” Journal of Engineering Mechanics, Vol. 120, No. 4, pp. 748-757, 1994.
15. Chou, K.C., and Cortis, R.B., “Simulation of hourly wind speed and array wind power,” Solar Energy, Vol. 26, pp. 199–212 (1981).
16. Corotis, R.B., Sigl, A.B., and Klein, J., “Probabilities models of wind velocity magnitude and persistence,” Solar Energy, Vol. 20, pp. 483-493 (1978).
17. Daniel, A.R. and Chen, A.A., “Stochastic simulation and forecasting of hourly average wind speed sequences in Jamaica,” Solar Energy, Vol. 46, pp. 1-11 (1991).
18. Davenport, A.G., “The Relationship of Reliability to Wind Loading,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 13, No. 1-3, Dec, pp. 3-17 (1983).
19. Der Kiureghian, A., and Ke, J. B., “The stochastic finite element method in structural reliability, ” Probabilistic Engineering Mechanics, Vol. 3, pp. 83-91 (1988).
20. Ditlevsen, O., “Gaussian outcrossings from safe convex polyhedrons,” Journal of Engineering Mechanics, Vol. 109, pp. 127-148, 1983.
21. Ellis, B.R., “Assessment of the accuracy of predicting the fundamental natural frequencies of buildings and the implications concerning the dynamic analysis of structures,” Proceedings of the Institution of Civil Engineers, Part1, Vol. 69, pp. 763-776 (1980).
22. Geol, R.K., and Chopra, A.K., “Period formulas for moment-resisting frame buildings,” Journal of structural engineering, Vol. 123, No. 11, pp. 1451-1451 (1998).
23. Gu, M., and Quan, Y., “Across-wind loads of typical tall buildings,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 92, pp. 1147-1165 (2004).
24. Gumbel, E., Statistics of Extremes, Columbia Univ. Press, New York, 1958.
25. Gupta, S., and Manohar, C. S., “Reliability analysis of randomly vibrating structures with parameter uncertainties,” Journal of Sound and Vibration, Vol. 297, No. 3-5, pp. 1000-1024, 2006.
26. Gupta, S., and van Gelder, P.H.A.J.M, “Extreme value distributions for nonlinear transformations of vector Gaussian processes,” Probabilistic Engineering Mechanics, Vol. 22, pp. 136-149, 2007.
27. Hagen, Q., and Tvedt, L., “Vector process out-crossing as parallel system sensitivity measure,” Journal of Engineering Mechanics, Vol. 117, pp. 2201-2220, 1991.
28. Hasofer, A.M., “The upcrossing rate of a class of stochastic processes,” Studies in probability and statistics, E. J. Williams, ed., Jerusalem Academic Press, Jerusalem, Israel, pp. 153-170, 1974.
29. Hennesey, J.P., “A comparsion of Weibull and Rayleigh distribution for estimating wind power potential,” Wind Engineering, Vol. 3, pp. 156-164 (1978).
30. Hohenbichler, M., and Rackwitz, R., “Non-normal dependent vectors in structural safety,” Journal of the Engineering Mechanics Division, ASCE, Vol. 107, No. EM6, pp. 1227-1238, 1981.
31. Islam, M.S., “Modal coupling and wind-induced vibration of tall buildings,” Ph.D. Dissertation, The Johns Hopkins University (1988).
32. ISO 4354, “Wind Actions on Structures, International Standard,” 1997.
33. Jain, A., Srinivasan, M., and Hart, Gary C., “Performance based design extreme wind loads on a tall building,” Structural Design of Tall Buildings, Vol. 10, No. 1, pp. 9-26 (2001).
34. Kamal, L. and Jafri, Y.Z., “Time series model to simulate and forecast hourly averaged wind speed in Quetta, Pakistan,” Solar Energy, Vol. 61, pp. 23-32 (1997).
35. Kareem, A., “Reliability analysis on wind-sensitive structures,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 33, pp. 495-514 (1990).
36. Liang, S., Liu, S., Li, Q.S., Zhang, L., and Gu, M., “Mathematical model of acrosswind dynamic loads on rectangular tall buildings,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, pp. 1757-1770 (2002).
37. Lindgren, G., “Extremal ranks and transformation of variables for extremes of functions of multivariate Gaussian processes,” Stochastic Processes and their Applications, Vol. 17, pp. 285-312, 1984.
38. Luna, R.E. and Church, A.W., “Estimation of long-term concentration using a “universal” wind speed distribution,” Journal Applied Meteorology, Vol. 13, pp. 910-916 (1974).
39. Marukawa, H., and Ohkuma, T., “Formula of fluctuating wind forces for estimation of across-wind and torsional responses of prismatic high rise buildings,” Journal of Structural and Construction Engineering AIJ, No. 482, pp. 33-42 (1996).
40. Melchers, R. E., Structural reliability analysis and prediction, John Wiley and Sons (1987).
41. Nfaoui, H., Buret, J., and SAYIGH, A.A.M., “Stochastic simulation of hourly average wind speed sequences in Tangiers(Morocco)” Solar Energy, Vol. 56, No. 3, pp. 301-314 (1996).
42. Poggi, P., Muselli, M., Notton, G., Cristofari, C., and Louche A., “Forecasting and simulating wind speed in Corsica by using an autoregressive model,” Engery Conversion and Management, Vol. 44, pp. 3177-3196 (2003).
43. Rice, S.O., “Mathematical analysis of random noise,” Bell System Technical Journal, Vol. 23, pp. 282-332 (1944).
44. Sasaki, A., Satake, N., Arakawa, T., Suda, K., Ono, J., and Morita, K., “Damping properties of buildings using full-scale data,” Proceedings of the Symposium on Damping Technology of the 21st Century, Dynamics and Design Conference 97, The Japan Society of Mechanical Engineers Centennial Grand Congress, pp. 25-28 (1997).
45. Sherlock, R.H., “Analysing winds for frequency and duration on atmospheric pollution,” Meteorology Monogr American Meteorology Socity, Vol. 4, pp. 42-49 (1951).
46. Shumway, R. H. and Stoffer, D. S., “An approach to time series smoothing and forecasting using the EM algorithm,” Journal of Time Series Analysis, 3(4), 253 (1982).
47. Tamura, Y., Suda, J., and Sasaki, A., “Damping in buildings for wind resistant design,” International Symposium on Wind and Structures for the 21st century, Cheju, Korea, pp. 115-130 (2000).
48. Tamura, Y., Suda, K., and Sasaki, A., “Damping in buildings for wind resistant design,” International Symposium on Wind and Structures for the 21st Century, Cheju, Korea, pp. 115-130 (2000).
49. Tompson, A., Ababou, R., and Gelhar, L., “Implementation of the three-dimensuibal turning bands random field generator,” Water Resources Research, Vol. 25, pp. 2227-2243 (1989).
50. Vanmarcke, E.H., Random fields: analysis and synthesis, The MIT Press, Cambridge, 1983.
51. Veneziano, D., Grigoriu, M., and Cornell, C.A., “Vector-process models for system reliability, ” Journal of the Engineering Mechanics Division, Vol. 103, No. 3, pp. 441-460 (1977).
52. Vickery, B.J., “On the reliability of gust loading factors,” Civil engineering transactions, pp. 1-9 (1971).
53. Wen, Y. K., and Chen, H.-C., “On fast integration for time variant structural reliability,” Probabilistic Engineering Mechanics, Vol. 2, No. 3, pp. 156-162, 1987.
54. Wen, Y.K., and Kang, Y.J., “Minimum building life-cycle cost design criteria II: applications,” Journal of Structural Engineering, Vol. 127, pp. 338-346(2001).
55. William, P.E., Building periods: moving forward, Structure magazine, pp. 24-27 (2008).
56. Wirsching, P.H., Paez, T.L., and Ortiz, K., Random vibrations: theory and practice, Wiley Inter-science, 1995.
57. Ye, H., The Handbook of Data Mining, Lawrence Erlbaum Assoc Inc (2003).

無法下載圖示 全文公開日期 2018/07/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE