簡易檢索 / 詳目顯示

研究生: 吳宗霖
Zong-Lin Wu
論文名稱: 非接觸式量測於細胞膜量測通透性研究
Non-contact measurement for cell membrane permeability studies
指導教授: 曾修暘
Hsiu-Yang Tseng
口試委員: 林顯群
sclynn@mail.ntust.edu.tw
田維欣
whtien@mail.ntust.edu.tw
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 95
中文關鍵詞: 非接觸式量測細胞膜通透性流體動力學微渦流T細胞
外文關鍵詞: non-contact measurement, cell membrane permeability, hydrodynamics, mirco-vortex, T cell
相關次數: 點閱:269下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞膜對於水的通透性 (Cell-membrane permeability to water) 與細胞膜對於抗凍劑的通透性 (Cell-membrane permeability to cryoprotective agents) 是生物樣本進行最佳化冷凍保存 (Cryopreservation) 的關鍵資訊。此項研究開發了一種微渦流 (Mirco-vortex) 系統,利用微流體 (Microfluidics) 通道的擴展區域在低雷諾數下,被動形成的流體動力 (Hydrodynamic) 將感興趣的細胞捕獲並且維持在渦流中。被捕獲的細胞會保持懸浮狀態 (Suspension),並隨著局部渦流的流線移動,因此,細胞被捕獲在該系統中避免了物理接觸 (Physical contact) 的情況發生,進一步支持細胞膜通透性的理論中利用細胞體積的圖形計算球型體積時,將其假設為100% 球形並且求出細胞膜活性表面積。因此,透過高速攝影中的即時細胞辨識系統,細胞膜通透性可以通過影像可視化追蹤單顆細胞並且取得其二維圖形,透過架設瞬態的滲透性梯度 (Osmotic gradient) 在細胞內 (Intracellular) 與細胞外 (Extracellular) 環境,計算響應細胞體積變化。本研究以急性 T 細胞淋巴瘤細胞系 (Jurkat) 為模型,來檢查新採用的微渦流技術,結果表明其數值略高於現有技術。我們的結果呈現高於使用基於物理接觸的細胞捕獲裝置,顯示基於非接觸式的量測顯著影響細胞膜通透性的活性表面積,提供一個提高對於細胞膜通透性量測準確性的新方法。


    The permeabilities of cell-membrane to water (Lp) and cryoprotective agents (Ps) are the specific cellular information for achieving optimal cryopreservation of biological samples. In this research, a micro-vortex system was developed to practically capture the interesting cells in a low-Reynolds number hydrodynamic circulation passively formed at the expansion region of the microfluidic channel. Trapped cells remain suspended at the expansion region where the cells flow along with the streamline of the localized vortex. Therefore, the feature of none physical contact with the device structure supports the practical assumption of 100% sphericity and cell membrane active surface area, which is used to obtain images from the system to estimate the cell volume changes. In additional, cell membrane permeability was able to be accurately determined by direct visualization, with automatic cell recognition from high-speed videos, the transient cell-volume change curves response to a sudden osmotic gradient applied instantaneously (within 2 seconds) between the intracellular and extracellular environments. A cell line of acute T-cell lymphoma, Jurkat, was used as a model to examine the newly-adopted micro-vortex technology in this research, and our results indicate a moderately higher values than those in prior arts. Compared with those in the prior art using contact-based cell capture technology, it exhibits a significant influence of the active surface area on the measurement of cell membrane permeability.

    聲明 II 摘要 III Abstract IV 致謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1. 細胞療法 1 1.1.1. 免疫細胞 1 1.1.2. 冷凍保存的需求性 3 1.2. 細胞內質量傳遞 4 1.2.1. 細胞膜和水通道蛋白 4 1.2.2. 滲透壓 5 1.2.3. 細胞膜通透性 6 1.3. 冷凍保存 7 1.3.1. 抗凍劑 8 1.3.2. 冷凍損傷 9 1.3.3. 最佳化冷凍保存 13 1.4. 文獻回顧 14 1.4.1. 基於接觸的量測方式 15 1.4.2. 非接觸式量測方式 18 1.5. 研究動機與目的 20 第二章 實驗測量與方法 21 2.1. 實驗架設 21 2.1.1. 微渦流捕獲細胞的擴張區域設計 22 2.1.2. 微流道晶片製作 24 2.1.3. 急性T細胞淋巴瘤細胞系 30 2.1.4. 細胞繼代與懸浮液備置 31 2.2. 二元和三元系統的細胞膜輸運模型 34 2.3. 實驗流程 36 2.3.1. 用於單細胞識別的高速成像調整 39 2.3.2. IMAQ Canny Edge Detection VI 41 第三章 實驗結果與討論 42 3.1. 細胞捕獲的流速相依性 43 3.1.1. 細胞捕獲數與雷諾數 43 3.1.2. 雷諾數三相與渦流軌跡關係 45 3.1.3. 細胞軌跡追蹤 46 3.1.4. 不同雷諾數捕獲的細胞差異性 47 3.2. 微渦流中更換試劑的瞬態響應 48 3.2.1. 擴張區域的溶液置換 48 3.2.2. 擴張區域的置換可視化 49 3.3. 滲透無活性細胞體積(Vb) 50 3.3.1. 等滲溶液下渦流中細胞的體積變化 50 3.3.2. Jurka的滲透無活性細胞體積 51 3.4. 二元系統中的細胞膜對水的通透性(Lp) 52 3.5. 三元系統中細胞膜對水(Lp)與抗凍劑(Ps)的通透性 54 3.6. 細胞膜通透性的溫度相依性 56 3.6.1. 活化能(Activation energy, Ea) 56 3.6.2. Jurkat的細胞膜通透性與溫度相依性 58 3.7. 接觸式與非接觸式量測的比較 59 第四章 結論與建議 61 4.1. 結論 61 4.2. 建議 62 第五章 附錄 63 5.1. 高速攝影機控制(LabVIEW) 63 5.2. 細胞影像分析(LabVIEW) 65 5.3. 細胞位置分析(LabVIEW) 67 5.4. 原始圖檔轉色彩強度圖(LabVIEW) 68 5.5. 微灌注汞控制系統(LabVIEW) 70 5.6. 二元系統的細胞體積變化擬合 (Matlab) 72 5.7. 二元系統的理論線(Matlab) 73 5.8. 三元系統的細胞體積擬合(Matlab) 74 5.9. 三元系統的細胞體積理論線(Matlab) 75 第六章 參考文獻 76

    1. Mullard, A. 2017 FDA drug approvals. Nat. Rev. Drug Discov. 17, 81–85 (2018).
    2. Bachanova, V. et al. Chimeric Antigen Receptor T Cell Therapy During the COVID-19 Pandemic. Biol. Blood Marrow Transplant. 26, 1239–1246 (2020).
    3. Neelapu, S. S. et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).
    4. Rosenberg, S. A. &Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science (80-. ). 348, 62–68 (2015).
    5. June, C. H., Riddell, S. R. &Schumacher, T. N. June 2015, A race to the finish. 7, 1–8 (2015).
    6. Franco, R. Conversations between the nervous system and the immune system. Rev. Int. Acupunt. 8, 879–888 (2014).
    7. Torang, A., Gupta, P. &Klinke, D. J. An elastic-net logistic regression approach to generate classifiers and gene signatures for types of immune cells and T helper cell subsets. bioRxiv 1–15 (2019) doi:10.1101/623082.
    8. Meneghel, J., Kilbride, P. &Morris, G. J. Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies—A Review. Front. Med. 7, (2020).
    9. Shi, Y., Cai, M., Zhou, L. &Wang, H. The structure and function of cell membranes studied by atomic force microscopy. Semin. Cell Dev. Biol. 73, 31–44 (2018).
    10. Cooper, R. A. Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells. Prog. Clin. Biol. Res. No 30, 135–152 (1979).
    11. https://en.wikipedia.org/wiki/Osmotic_pressure, 2021-11-25.
    12. Peter M. Cryobiology: The freezing of biological systems. Science (80-. ). 138, 939–949 (1970).
    13. Kleinhans, F. W. Membrane Permeability Modeling: Kedem-Katchalsky vs a Two-Parameter Formalism. Cryobiology 37, 271–289 (1998).
    14. Kedem, O. &Katchalsky, A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. BBA - Biochim. Biophys. Acta 27, 229–246 (1958).
    15. Pegg, D. E. Principles of cryopreservation. Preserv. Hum. Oocytes From Cryobiol. Sci. to Clin. Appl. 368, 12–24 (2009).
    16. Chang, T. &Zhao, G. Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. Adv. Sci. 8, 1–34 (2021).
    17. Bissoyi, A., Pramanik, K., Panda, N. N. &Sarangi, S. K. Cryopreservation of hMSCs seeded silk nanofibers based tissue engineered constructs. Cryobiology 68, 332–342 (2014).
    18. Massie, I. et al. GMP cryopreservation of large volumes of cells for regenerative medicine: Active control of the freezing process. Tissue Eng. - Part C Methods 20, 693–702 (2014).
    19. Gurruchaga, H. et al. Cryopreservation of microencapsulated murine mesenchymal stem cells genetically engineered to secrete erythropoietin. Int. J. Pharm. 485, 15–24 (2015).
    20. Fong, C. Y., Subramanian, A., Biswas, A. &Bongso, A. Freezing of Fresh Wharton’s Jelly from Human Umbilical Cords Yields High Post-Thaw Mesenchymal Stem Cell Numbers for Cell-Based Therapies. J. Cell. Biochem. 117, 815–827 (2016).
    21. Cagol, N., Bonani, W., Maniglio, D., Migliaresi, C. &Motta, A. Effect of cryopreservation on cell-laden hydrogels: Comparison of different cryoprotectants. Tissue Eng. - Part C Methods 24, 20–31 (2018).
    22. Mantri, S., Kanungo, S. &Mohapatra, P. C. Cryoprotective Effect of Disaccharides on Cord Blood Stem Cells with Minimal Use of DMSO. Indian J. Hematol. Blood Transfus. 31, 206–212 (2015).
    23. Acker, J. P. Biopreservation of cells and engineered tissues. Adv. Biochem. Eng. Biotechnol. 103, 157–187 (2006).
    24. Song, Y. S. et al. Microfluidics for cryopreservation. Lab Chip 9, 1874–1881 (2009).
    25. Mazur, P. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247, 0–4 (1984).
    26. Mazur, P., Leibo, S. P. &Chu, E. H. Y. A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Exp. Cell Res. 71, 345–355 (1972).
    27. Gao, D. &Critser, J. K. Mechanisms of cryoinjury in living cells. ILAR J. 41, 187–196 (2000).
    28. Benson, J. D., Kearsley, A. J. &Higgins, A. Z. Mathematical optimization of procedures for cryoprotectant equilibration using a toxicity cost function. Cryobiology 64, 144–151 (2012).
    29. Davidson, A. F., Benson, J. D. &Higgins, A. Z. Mathematically optimized cryoprotectant equilibration procedures for cryopreservation of human oocytes. Theor. Biol. Med. Model. 11, 1–19 (2014).
    30. Benson, J. D., Chicone, C. C. &Critser, J. K. Exact solutions of a two parameter flux model and cryobiological applications. Cryobiology 50, 308–316 (2005).
    31. Wang, J., Zhao, G., Zhang, Z., Xu, X. &He, X. Magnetic induction heating of superparamagnetic nanoparticles during rewarming augments the recovery of hUCM-MSCs cryopreserved by vitrification. Acta Biomater. 33, 264–274 (2016).
    32. Fahy, G. M., MacFarlane, D. R., Angell, C. A. &Meryman, H. T. Vitrification as an approach to cryopreservation. Cryobiology 21, 407–426 (1984).
    33. Fahy, G. M. &Wowk, B. Principles of ice-free cryopreservation by vitrification. Methods in Molecular Biology vol. 1257 (2014).
    34. Lusianti, R. E., Benson, J. D., Acker, J. P. &Higgins, A. Z. Rapid removal of glycerol from frozen-thawed red blood cells. Biotechnol. Prog. 29, 609–620 (2013).
    35. Wowk, B. Thermodynamic aspects of vitrification. Cryobiology 60, 11–22 (2010).
    36. Fahy, G. M. et al. Physical and biological aspects of renal vitrification. Organogenesis 5, 167–175 (2009).
    37. Hoffmann, N. E. &Bischof, J. C. The cryobiology of cryosurgical injury. Urology 60, 40–49 (2002).
    38. Huebinger, J. et al. Direct Measurement of Water States in Cryopreserved Cells Reveals Tolerance toward Ice Crystallization. Biophys. J. 110, 840–849 (2016).
    39. Pegg, D. E. The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology 60, S36–S44 (2010).
    40. Mazur, P. &Rigopoulos, N. Contributions of unfrozen fraction and of salt concentration to the survival of slowly frozen human erythrocytes: Influence of warming rate. Cryobiology 20, 274–289 (1983).
    41. Toner, M. et al. Nonequilibrium freezing of one-cell mouse embryos. Membrane integrity and developmental potential. Biophys. J. 64, 1908–1921 (1993).
    42. Devireddy, R.V., Raha, D. &Bischof, J. C. Measurement of water transport during freezing using differential scanning calorimetry. Am. Soc. Mech. Eng. Bioeng. Div. BED 34, 37–41 (1996).
    43. Devireddy, R.V. et al. Cryopreservation of equine sperm: Optimal cooling rates in the presence and absence of cryoprotective agents determined using differential scanning calorimetry. Biol. Reprod. 66, 222–231 (2002).
    44. Mori, S., Choi, J., Devireddy, R.V. &Bischof, J. C. Calorimetric measurement of water transport and intracellular ice formation during freezing in cell suspensions. Cryobiology 65, 242–255 (2012).
    45. Gao, D. Y. et al. Membrane transport properties of mammalian oocytes: A micropipette perfusion technique. J. Reprod. Fertil. 102, 385–392 (1994).
    46. Chen, H. hung, Purtteman, J. J. P., Heimfeld, S., Folch, A. &Gao, D. Development of a microfluidic device for determination of cell osmotic behavior and membrane transport properties. Cryobiology 55, 200–209 (2007).
    47. Weng, L. et al. A highly-occupied, single-cell trapping microarray for determination of cell membrane permeability. Lab Chip 17, 4077–4088 (2017).
    48. Lai, D., Ding, J., Smith, G. W., Smith, G. D. &Takayama, S. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification. Hum. Reprod. 30, 37–45 (2015).
    49. Wolkers, W. F. et al. Factors Affecting the Membrane Permeability Barrier Function of Cells during Preservation Technologies. Langmuir 35, 7520–7528 (2019).
    50. Boytsov, D., Hannesschlaeger, C., Horner, A., Siligan, C. &Pohl, P. Micropipette Aspiration-Based Assessment of Single Channel Water Permeability. Biotechnol. J. 15, (2020).
    51. Raju, R., Höhn, H., Karnutsch, C., Khoshmanesh, K. &Bryant, G. Measuring volume kinetics of human monocytes in response to cryoprotectants using microfluidic technologies. Appl. Phys. Lett. 114, (2019).
    52. Gao, D. Y. et al. Development of a novel microperfusion chamber for determination of cell membrane transport properties. Biophys. J. 71, 443–450 (1996).
    53. Chen, H. hung et al. A microfluidic study of mouse dendritic cell membrane transport properties of water and cryoprotectants. Int. J. Heat Mass Transf. 51, 5687–5694 (2008).
    54. Heo, Y. S. et al. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform. Lab Chip 11, 3530–3537 (2011).
    55. Wang, J. et al. Dual Dependence of Cryobiogical Properties of Sf21 Cell Membrane on the Temperature and the Concentration of the Cryoprotectant. PLoS One 8, (2013).
    56. Yue, C. et al. Effect of hydroxyapatite nanoparticles on osmotic responses of pig iliac endothelial cells. Cryobiology 69, 273–280 (2014).
    57. Lyu, S. R., Chen, W. J. &Hsieh, W. H. Measuring transport properties of cell membranes by a PDMS microfluidic device with controllability over changing rate of extracellular solution. Sensors Actuators, B Chem. 197, 28–34 (2014).
    58. Liu, W. et al. High-precision approach based on microfluidic perfusion chamber for quantitative analysis of biophysical properties of cell membrane. Int. J. Heat Mass Transf. 86, 869–879 (2015).
    59. Yang, T. et al. Determination of the membrane transport properties of jurkat cells with a microfluidic device. Micromachines 10, 1–13 (2019).
    60. Tseng, H. Y. et al. A microfluidic study of megakaryocytes membrane transport properties to water and dimethyl sulfoxide at suprazero and subzero temperatures. Biopreserv. Biobank. 9, 355–362 (2011).
    61. McGrath, J. J. A microscope diffusion chamber for the determination of the equilibrium and non‐equilibrium osmotic response of individual cells. J. Microsc. 139, 249–263 (1985).
    62. McGrath, J. J. Quantitative measurement of cell membrane transport: Technology and applications. Cryobiology 34, 315–334 (1997).
    63. Huang, L., Benson, J. D. &Almasri, M. Microfluidic measurement of individual cell membrane water permeability. Anal. Chim. Acta 1163, 338441 (2021).
    64. Tseng, H.-Y., Chen, C.-J., Wu, Z.-L., Ye, Y.-M. &Huang, G.-Z. The non-contact-based determination of the membrane permeability to water and dimethyl sulfoxide of cells virtually trapped in a self-induced micro-vortex. Lab Chip (2022) doi:10.1039/d1lc00846c.
    65. MacH, A. J., Kim, J. H., Arshi, A., Hur, S. C. &DiCarlo, D. Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab Chip 11, 2827–2834 (2011).
    66. Zhou, J., Kasper, S. &Papautsky, I. Enhanced size-dependent trapping of particles using microvortices. Microfluid. Nanofluidics 15, 611–623 (2013).
    67. DiCarlo, D., Irimia, D., Tompkins, R. G. &Toner, M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. U. S. A. 104, 18892–18897 (2007).
    68. DiCarlo, D. Inertial microfluidics. Lab Chip 9, 3038–3046 (2009).
    69. Matas, J. P., Morris, J. F. &Guazzelli, É. Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515, 171–195 (2004).
    70. Matas, J. P., Glezer, V., Guazzelli, É. &Morris, J. F. Trains of particles in finite-Reynolds-number pipe flow. Phys. Fluids 16, 4192–4195 (2004).
    71. Khojah, R., Stoutamore, R. &DiCarlo, D. Size-tunable microvortex capture of rare cells. Lab Chip 17, 2542–2549 (2017).
    72. https://www.azom.com/article.aspx?ArticleID=14346, 2021-11-25.
    73. Schneider, U., Schwenk, H. ‐U &Bornkamm, G. Characterization of EBV‐genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non‐Hodgkin lymphoma. Int. J. Cancer 19, 621–626 (1977).
    74. Pawelec, G., Borowitz, A., Krammer, P. H. &Wernet, P. Constitutive interleukin 2 production by the JURKAT human leukemic T cell line. Eur. J. Immunol. 12, 387–392 (1982).
    75. McGann, L. E., Stevenson, M., Muldrew, K. &Schachar, N. Kinetics of osmotic water movement in chondrocytes isolated from articular cartilage and applications to cryopreservation. J. Orthop. Res. 6, 109–115 (1988).
    76. Lucké, B. &McCutcheon, M. The living cell as an osmotic system and its permeability to water. Physiol. Rev. 12, 68–139 (1932).
    77. Hunter, J. E., Bernard, A., Fuller, B. J., McGrath, J. J. &Shaw, R. W. Measurements of the membrane water permeability (Lp) and its temperature dependence (activation energy) in human fresh and failed-to-fertilize oocytes and mouse oocyte. Cryobiology 29, 240–249 (1992).
    78. Leibo, S. P. Water permeability and its activation energy of fertilized and unfertilized mouse ova. J. Membr. Biol. 53, 179–188 (1980).
    79. Jackowski, S., Leibo, S. P. &Mazur, P. Glycerol permeabilities of fertilized and unfertilized mouse ova. J. Exp. Zool. 212, 329–341 (1980).
    80. Levin, R. L., Cravalho, E. G. &Huggins, C. E. Effect of hydration on the water content of human erythrocytes. Biophys. J. 16, 1411–1426 (1976).
    81. Paquin, F., Rivnay, J., Salleo, A., Stingelin, N. &Silva, C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 3, 10715–10722 (2015).
    82. Hagedorn, M. et al. Altering fish embryos with aquaporin-3: An essential step toward successful cryopreservation. Biol. Reprod. 67, 961–966 (2002).
    83. Marrow, B. et al. Cutting Edge Communication. 489, 473–489 (2003).
    84. Giovannoni, J. M Olecular B Iology of F Ruit. 363–369 (2001).
    85. Shu, Z. et al. A study of the osmotic characteristics, water permeability, and cryoprotectant permeability of human vaginal immune cells. Cryobiology 72, 93–99 (2016).
    86. Hempling, H. G., Thompson, S. &Dupre, A. Osmotic properties of human lymphocyte. J. Cell. Physiol. 93, 293–302 (1977).
    87. Porsche, A. M., Körber, C., Englich, S., Hartmann, U. &Rau, G. Determination of the permeability of human lymphocytes with a microscope diffusion chamber. Cryobiology 23, 302–316 (1986).

    無法下載圖示 全文公開日期 2032/01/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE