簡易檢索 / 詳目顯示

研究生: 鍾家豪
Chia-Hao Chung
論文名稱: 大眾運輸系統轉乘站之公車停等及跳站系統設計
The Design of Bus Holding and Skipping System with MRT-ebus Transferring Station
指導教授: 羅士哲
Shih-che Lo
口試委員: 林希偉
Shi-woei Lin
蔡鴻旭
Hung-hsu Tsai
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 56
中文關鍵詞: 智慧型運輸系統轉乘系統公車停等策略公車跳站策略基因演算法模擬系統
外文關鍵詞: Intelligent Transportation Systems, Transfer System, Bus Holding Strategy, Bus Skipping Strategy, Genetic Algorithm, Simulation Software
相關次數: 點閱:317下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 若要擴展大眾運輸與轉乘系統在各個主要城市內的服務範圍,須結合公車系統並進行改善。本研究透過全球定位系統,經由智慧型運輸系統獲得即時資訊,發展出一結合公車停等策略與公車跳站策略系統,以改善都市地區大眾運輸轉乘系統。在此模型中,主要的目標在於最小化:(1)公車行走時間;(2)公車停等時間;(3)乘客在公車站牌上的等待時間;(4)乘客在公車上的等待時間。
    為了確保此轉乘系統之執行,我們運用基因演算法先進行系統參數的設計,最後再運用求取出來的系統參數得出此轉乘系統之最佳解。運用系統模擬軟體建構出實際的大眾運輸轉乘系統,並進行驗算分析作為衡量系統的效能指標。研究結果顯示,公車停等策略與公車跳站策略系統在總體的公車運行及乘客等候時間上有12.26%的改善。


    In most major cities, to extend the public transportation with the transfer system needed to connect and develop by the bus. This research aim is to present a model to combine the bus holding and skipping system (BHSS) for Mass Rapid Transit (MRT) and e-bus transferring system by using Global Positioning System and Intelligent Transportation Systems to acquire the real-time information to improve the metropolitan public transfer system. In this BHSS the goal is to minimize: (1) bus traveling time; (2) bus holding time; (3) passengers’ waiting time at the bus stops; and (4) passengers’ waiting time on the bus.
    In order to enhance the performance of the MRT-ebus transfer system. First, we use the Genetic Algorithms to determine the parameters of our BHSS, and to find the optimal solution of the proposed BHSS. Second, using simulation software to design the real public transferring system and to analysis and evaluate the system performance index. The result shows that executing the BHSS in the transfer system indeed improve overall performance with 12.26% improvement for the MRT-ebus transfer system.

    摘要 ABSTRACT ACKNOWLEDGMENTS CONTENTS FIGURES TABLES CHAPTER 1 INTRODUCTION 1.1 Research Motivation 1.2 Research Structure CHAPTER 2 LITERATURE REVIEW 2.1 Real-time Control Strategies 2.1.1 Holding Strategies 2.1.2 Stop-Skipping Strategies 2.2 Intelligent Transportation Systems 2.2.1 Automatic Vehicle Location (AVL) 2.2.2 Smart Cards 2.2.3 Automatic Passenger Counters 2.2.4 Automatic Annunciation 2.3 Real-time Control Problem for Public Transportation 2.4 Genetic Algorithms 2.5 Applications of Simulation Software CHAPTER 3 THE DESIGN OF THE BHSS 3.1 Public Transportation 3.1.1 Rail Transit 3.1.2 Waterways 3.1.3 Bus 3.2 Taipei e-bus System 3.3 Mathematical Formulation For the BHSS CHAPTER 4 EXPERIMENT RESULTS 4.1 Data Collection 4.2 Case Study 4.3 Genetic Algorithm Models 4.3.1 Adjustable Cell Setting 4.3.2 System Constants Setting 4.3.3 Genetic Algorithms Results 4.4 AnyLogic Simulation 4.4.1 AnyLogic Element Introduction 4.4.2 Simulation Established 4.4.3 AnyLogic Simulation Results 4.5 Summary CHAPTER 5 CONCLUSIONS 5.1 Conclusions 5.2 Further Research REFERENCES

    Abkowitz, M.D., Engelstein, I., 1984. Methods for maintaining transit service regularity. Transportation Research Record 961, 1–8.
    Abkowitz, M.D., Eiger, A., Engelstein, I., 1986. Optimal headway variation on transit routes. Journal of Advanced Transportation 20 (1), 73–88.
    Barnett, A.I., 1974. On controlling randomness in transit operations. Transportation Science 8 (2), 101–116.
    Cathey, F.W., Dailey, D.J., 2003. A Prescription for Transit Arrival/Departure Prediction Using Automatic Vehicle Location Data. Transportation Research C: Emerging technologies 11 (3–4), 241-264.
    Dessouky, M., Hall, R., Nowroozi, A., Mourikas, K., 1999. Bus dispatching at timed transfer transit stations using bus tracking technology. Transportation Research Part C: Emerging Technologies 7(4), 187–208.
    Dessouky, M., Hall R., Zhang, L., Singh, A., 2003. Real-time control of buses for schedule coordination at a terminal. Transportation Research Part A: Policy and Practice 37(2), 145–164.
    Dundar, S., Şahin, I., 2013. Train re-scheduling with genetic algorithms and artificial neural networks for single-track railways. Transportation Research Part C 27, 1-15.
    Eberlein, X.J., Wilson, M.H., Barnhart, M.C., Bernstein, D., 1998. The real-time deadheading problem in transit operations control. Transportation Research Part B: Methodological 32(2), 77–100.
    Eberlein, X.J., Wilson, N.H.M., Bernstein, D., 1999. Modeling real-time control strategies in public transit operations, Lecture Note in Economics and Mathematical Systems: Computer Aided Transit Scheduling, Springer-Verlag, Berlin, Heidelberg 471, 325–346.
    Fu, L., Liu, Q., Calamai, P., 2003. Real-time optimization model for dynamic scheduling of transit operations. Transportation Research Record 1857, 48–55.
    Fan, W., Machemehl, R.B., 2006. Optimal transit route network design problem with variable transit demand: genetic algorithm approach. Journal of Transportation Engineering 132 (1), 40–51.
    Goldberg, D.E., 1989b. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Pub. Co, Reading, Mass.
    Hickman, M., Day T., 1996. An assessment of information systems and technologies at California Transit Agencies. Transportation Research Board 1521, 49-57.
    Jones, W. S., 1997. ITS technologies in public transit: Deployment and benefits. Washington, D.C.: United States Department of Transportation, ITS Joint Program Office.
    Koffman, D., 1978. A simulation study of alternative real-time bus headway control strategies. Transportation Research Record 663, 41–46.
    Khattak, A., Noeimi, H., Al-Deek H., Hall, R., 1993. Advanced Public Transportation Systems: A Taxonomy and Commercial Availability. PATH Research Report, UCB-ITS-PRR-93-9.
    Kim, E., Jha, M.K., Son, B., 2005. Improving the computational efficiency of highway alignment optimization models through a stepwise genetic algorithms approach. Transportation Research Part B: Methodological 39 (4), 339–360.
    Khoat, N., Bernard, D., 2006. Rescheduling in the urban transportation Networks. In: Proceeding 2006 IEEE International Conference on Service Systems and Service Management 2, 1501–1506.
    Lo, S. C., Chang, W. J., 2013. Design of real-time fuzzy bus holding system for the mass rapid transit transfer system. Expert Systems with Applications 39, 1718–1724.
    Li, Y., Xu, W., He, S., 2013. Expected value model for optimizing the multiple bus headways. Applied Mathematics and Computation 219, 5849–5861.
    Mesbah, M., Sarvi, M., Ouveysi, I., Currie, G., 2011a. Optimization of transit priority in the transportation network using a decomposition methodology. Transportation Research Part C: Emerging Technologies 19 (2), 363–373.
    Mesbah, M., Sarvi, M., Currie, G., 2011b. Optimization of transit priority in the transportation network using a genetic algorithm. IEEE Transactions on Intelligent Transportation Systems 12 (3), 908–919.
    Motraghi, A., Marinov, M.V., 2012. Analysis of urban freight by rail using event based simulation. Simulation Modelling Practice and Theory 25, 73–89.
    Okunieff, P.E., 1997. AVL systems for bus transit. TCRP Synthesis 24, Transportation Research Board, National Academy Press, Washington, DC.
    Osuna, E.E., Newell, G.F., 1972. Control strategies for an idealized public transportation system. Transportation Science 16 (1), 52–72.
    O’Dell, S.W., Wilson, N.H.M., 1999. Optimal real-time control strategies for rail transit operations during disruptions. Lecture Note in Economics and Mathematical Systems: Computer Aided Transit Scheduling, Springer-Verlag, Berlin, Heidelberg, 471, 299–323.
    Sun, A., Hickman, M., 2008. The holding problem at multiple holding stations. In: Proceeding. 2008 Springer International Conference Computer-aided Systems in Public Transport on Lecture Notes in Economics and Mathematical Systems 600, 339–359.
    Su, X., Chu, C.C., Prabhu, B.S., Gadh, R., 2007. On the identification device management and data capture via WinRFID1 edge-server. IEEE Systems Journal 1(2), 95–104.
    Shafahi, Y., Khani, A., 2010. A practical model for transfer optimization in a transit network: model formulations and solutions. Transportation Research Part A: Policy and Practice 44 (6), 377–389.
    Truschkin, E., Elbert, R., 2013. Horizontal transshipment technologies as enablers of combined transport: Impact of transport policies on the modal split. Transportation Research Part A: Policy and Practice 49, 91–109.
    Wang, L., Kwok, S.K., Ip, W.H., 2010. A radio frequency identification and sensor-based system for the transportation of food. Journal of Food Engineering 101, 120–129.
    Yu, B., Yang, Z., Li, S., 2012. Real-time partway deadheading strategy based on transit service reliability assessment. Transportation Research Part A: Policy and Practice 46, 1265–1279.
    Zolfaghari, S., Jaber, M.Y., Azizi, N., 2002. A multi-attribute performance measurement model for advanced public transit systems. Intelligent Transportation Systems Journal 7 (3–4), 295–314.
    Zhao, J., Bukkapatnam, S., Dessouky, M.M., 2003. Distributed Architecture for Real-Time Coordination of Bus Holding in Transit Networks, IEEE Transactions on Intelligent Transportation Systems 4, 43-51.

    QR CODE