簡易檢索 / 詳目顯示

研究生: 李政賢
CHENG-HSIEN LI
論文名稱: 車載乙太網路交換器之發展趨勢及策略研究-以A公司為個案
Research on the Development Trend and Strategy of Automotive Ethernet Switch-Take A company as A case study
指導教授: 周碩彥
Shuo-Yan Chou
施劭儒
Shao-Ju Shih
口試委員: 周碩彥
Shuo-Yan Chou
施劭儒
Shao-Ju.Shih
郭伯勳
Po-Hsun Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 高階科技研發碩士學位學程
Executive Master of Research and Development
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 168
中文關鍵詞: 車聯網車載乙太網路時間敏感網路乙太網路供電網路安全
外文關鍵詞: Internet of Vehicles, Automotive Ethernet, TSN, PoDL, Security
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 智慧城市始於IBM於2008年提出的智慧地球的概念,其理念是透過資訊和訊息的技術手段使得民眾的生活變得更便捷。透過供電系統、交通系統、居家生活、供水系統、企業組織、辦公室、醫療系統、政府機關、教育系統的相互連結,產生有效的資訊,幫助民眾在工作上更有效率,享受更美好的生活。

    在這樣的發展前提下,因而有了物聯網、工業物聯網、車聯網等新興產業的出現和興起,透過各式感測器的感知並產生數據後,經過高效能的運算處理系統的分析而成為了資訊,再經由網路將各種資訊串聯起來後透過AI智慧產生即時的決策和指令,使得各式設備能幾乎以無時間差的情況下進行正確的運作,也讓民眾能得到各式各樣的即時資訊,協助民眾做更有效的判斷和決策。

    上述的情境在車聯網的應用中即是先進駕駛輔助系統ADAS (Advanced Driver Assistance Systems)亦或是智慧自動駕駛系統欲達成的目標。然而,以現今的車載網路技術因頻寬限制無法進行大量資料傳輸、傳輸延遲時間無法確定、網路缺乏安全保護機制、各自網域內的資訊無法相互分享、中心運算處理系統無法及時處理大量資訊等因素而無法達到聯網汽車所期待的目標。

    為了改善及解決上述現今車載網路技術的限制和瓶頸,因而有了車載乙太網路的崛起,其基礎是以眾所皆知運行已久的乙太網路為其網路設計架構。由於汽車與人們的生活緊密結合,當汽車具有聯網功能後,為能確保及保障人們的安全,因此資料的傳輸延遲、網路安全、資料安全在聯網車中顯得更加的重要。車載乙太網路的技術在各方面皆比現今車載網路技術CAN Bus (Controller Area Network Bus)、 Lin Bus (Local Interconnect Network Bus)、FlexRay、MOST (Media Oriented Systems Transport)、LVDS (Low Voltage Differential Signaling) 更具優勢,且能完全滿足聯網汽車的各式功能需求。基於乙太網路已在航空、工業等產業使用多年,已足能證明乙太網路的穩定、安全、可控、可靠、快速、彈性、擴充便利等特性,足以成為引領車內網路重新架構和發展的主流技術,協助汽車商實現聯網車和智慧自動駕駛的目標。

    本研究的目的旨在提供一套有系統性的分析手段標準,協助個案事業部進行車載乙太網路的技術、優劣勢、市場需求、個案事業部之競爭能力、商品、市場產值等分析,進而產出合適個案事業部的決策、產品規劃、資源分配、戰略手段及營收預估,幫助個案事業部達成各階段所規劃之目標,協助企業達成永續經營的目標。


    The Smart City is from the concept of Smarter Planet proposed by IBM in 2008, the idea of Smart City is to make people's lives easier and more convenient by using information and messaging technology. The effective information can be generated through the interconnection of power supply systems, transportation systems, household living, water supply systems, business organizations, offices, medical systems, government agencies, and education systems, so that it can help people be more efficient at work and enjoy a better life.

    Under such a development premise, there is the emergence and rise of emerging industries are appeared and created, such as the Internet of Things, Industrial Internet of Things, V2X (Vehicle to Everything), etc. The data generated through the perception of various sensors are analyzed by a high-performance computing processing system to become information. Then the network connects all kinds of information together and uses AI intelligence to generate real-time decisions and commands so that all kinds of devices can operate correctly with almost no time lag, and people can get all kinds of real-time information to help them make more effective judgments and decisions.

    The realization of the above scenario on the V2X is the goal of ADAS (Advanced Driver Assistance Systems) or smart autonomous driving system. However, today's in-vehicle network technology is unable to transmit large amounts of data due to bandwidth limitations, the transmission delay cannot be determined, the network lacks security protection mechanisms, the information in each domain cannot be shared, and the central processing system cannot process large amounts of information in a timely manner, thus failing to achieve the desired goal of a networked vehicle.

    In order to improve and solve the limitations and bottlenecks of in-vehicle network technology in above, thus the Automotive-Ethernet is emerged, the structure of Automotive-Ethernet is based on the well-known Ethernet network to design its architecture. As cars are closely integrated with people's lives, when cars are connected to the internet, to ensure and protect people's safety, the data transmission delay, network security, and data security become more important in networked vehicles. Automotive-Ethernet technology is superior to CAN Bus (Controller Area Network Bus), Lin Bus (Local Interconnect Network Bus), FlexRay, MOST (Media Oriented Systems Transport), and LVDS (Low Voltage Differential Signaling) in all aspects, and can fully meet the functional requirements of networked vehicles. Based on the fact that Ethernet has been used in aviation and other industries for many years, it has proven to be stable, safe, controllable, reliable, fast, flexible, and easy to expand, hence, the Automotive-Ethernet will become a mainstream technology, and leading the network restructuring of in-vehicle network system, so that can help automakers achieve the goals of networked vehicles and smart autonomous driving.

    The purpose of the present study is to provide a set of systematic analysis means and standards to assist the business division of the case company in analyzing the technology, strengths and weaknesses, market demand, the competitiveness of the business division, products, and market scope of the Automotive-Ethernet network, in order to formulate appropriate decisions, product planning, resource allocation, strategic measures, and revenue estimates to help the business division achieve its goals and objectives at each stage of the project, so the case company can achieve the goal of sustainable operation.

    摘 要 I ABSTRACT III 誌 謝 V 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 個案公司介紹 3 1.3 研究對象 5 1.4 研究目的 7 1.5 論文架構 10 第二章 文獻探討與產業分析 13 2.1 車聯網產業分析 13 2.2 現有車載網路技術和瓶頸探討 28 2.3 車載乙太網路之應用及技術發展概況 57 第三章 研究結果與策略擬定 83 3.1 PEST-車聯網分析與結果 83 3.1.1 車聯網-PEST分析 83 3.1.2 車聯網-PEST分析之結果 86 3.2 個案事業部-波特五力分析與結果 93 3.2.1 波特五力分析 93 3.2.2 波特五力分析之結果 94 3.3 個案事業部-道斯矩陣(SWOT)分析與結果 98 3.3.1 道斯矩陣(SWOT)分析 98 3.3.2 道斯矩陣(SWOT)分析之結果 99 3.4 車載乙太網路與現有車載網路的互補與競爭分析 102 3.4.1 互補與競爭分析 102 3.4.2 互補與競爭分析之結果 104 3.5 個案事業部-波士頓矩陣(BCG)分析與結果 105 3.5.1 波士頓矩陣(BCG)分析 105 3.5.2 波士頓矩陣(BCG)分析結果 107 第四章 戰略與規劃 109 4.1 部門研發藍圖 110 4.1.1 驅動因子及產品規劃 110 4.1.2 產品規劃及技術缺口 116 4.2 個案事業部戰略分析-車載乙太網路交換器 124 4.3 未來營收目標 142 第五章 結論與建議 145 5.1 結論 145 5.2 未來發展建議 147 參考文獻 149 表目錄 表2.1:人駕汽車vs無人駕駛汽車對於半導體之需求比較 26 表2.2.1:汽車總線功能比較 28 表2.2.2:編碼方式比較:傳統乙太網路vs 車載乙太網路 48 表2.3.1:車內網路技術比較:現今車載網路 vs 車載乙太網路 58 表2.3.2:車內網路技術比較:車內網路技術OSI model比較 59 表2.3.3:Ethernet Network Characteristics 71 表2.3.4:Automotive traffic types summary 72 表2.3.5:Connected Car Technologies, Future Trends 75 表4.1.1.1:市場驅動因子分析 111 表4.1.1.2:內部驅動因子分析 115 表4.3.1:個案公司2017~2020整體營收 143 表4.3.2:個案公司2017~2019產品結構比例以及稅後淨利 143 圖目錄 圖1.1.1:新技術推助全自駕車發展示意圖 1 圖1.1.2:運用感知技術提升安全防護示意圖 2 圖1.1.3:感知系統每秒產生的數據量 2 圖1.2:個案公司之組織架構 4 圖1.4.1:5G應用主軸 7 圖1.4.2:自駕車聯網應用示意圖 9 圖1.5:論文架構圖 12 圖2.1.1:聯合國永續發展目標 14 圖2.1.2:車聯網之應用場景 15 圖2.1.3:車聯網Ecosystem 16 圖2.1.4:車聯網Market Size預估 17 圖2.1.5:Automotive Ethernet Market 18 圖2.1.6:Automotive Ethernet Market by Region 18 圖2.1.7:Trends in Automotive Networks 19 圖2.1.8:Campus Switch Port Shipments (Enterprise+SMB) 19 圖2.1.9:Enterprise Networking Market 20 圖2.1.10:車聯網專利佈局-以應用服務領域區分 21 圖2.1.11:車聯網專利佈局-不分產業均有投入的領域 22 圖2.1.12:ADAS系統範疇 23 圖2.1.13:ADAS技術趨勢 24 圖2.1.14:ADAS 全球滲透率預估 24 圖2.1.15:ADAS Global Market size預估 25 圖2.1.16:感測模組Market size預估 26 圖2.2.1:車內網路示意圖 28 圖2.2.2:ISO11898-2 高速控制區域網路(CAN BUS)架構 29 圖2.2.3:SO11898-3 低速控制區域網路(CAN BUS)架構 30 圖2.2.4:控制區域網路(CAN BUS)架構 31 圖2.2.5:CAN BUS Data Frame 32 圖2.2.6:CAN and the OSI model 32 圖2.2.7:LIN網路架構 33 圖2.2.8:LIN Bus與CAN Bus相連示意圖 33 圖2.2.9:LIN區域網際網路傳輸層 34 圖2.2.10:LIN BUS Data Frame 34 圖2.2.11:LIN BUS車內網路的應用 35 圖2.2.12:FlexRay車內應用示意圖 36 圖2.2.13:FlexRay匯流排網路架構 37 圖2.2.14:FlexRay星狀網路架構 37 圖2.2.15:FlexRay混和網路架構 37 圖2.2.16:FlexRay Data Frame 38 圖2.2.17:FlexRay BUS通訊週期 38 圖2.2.18:MOST車內應用 39 圖2.2.19:MOST Data Frame 40 圖2.2.20:MOST Data Frame Bandwidth 40 圖2.2.21:MOST網路模型 41 圖2.2.22:Bridge architecture IEEE 802.3 to MOST 41 圖2.2.23:Ethernet Data Frame 43 圖2.2.24:Ethernet Payload Data Frame 43 圖2.2.25:乙太網路OSI Model 44 圖2.2.26:MLT-3編碼方式 46 圖2.2.27:PAM3編碼方式 from MII to MDI 47 圖2.2.28:PAM3編碼3B轉2T方式 47 圖2.2.29:BroadR-Rich PHY relation to other IEEE 802.3 PHYs 49 圖2.2.30:傳輸載體比較:傳統乙太網路vs 車載乙太網路 49 圖2.2.31:車內車載乙太網路應用 50 圖2.2.32:Physical Layer Communication Structure: 802.3 Ethernet vs Automotive Ethernet 51 圖2.2.33:車內車載乙太網路應用 52 圖2.2.34:車用網路技術發展進程 53 圖2.2.35:Example of autonomous vehicle Electronic Control System 54 圖2.2.36:安全輔助系統產生的資料量 55 圖2.2.37:傳輸高畫質影像資料頻寬需求 55 圖2.2.38:先進駕駛輔助系統-行人和路況感知示意圖 56 圖2.3.1:車內總線裝配示意 57 圖2.3.2:車內網路傳輸技術Cost比較 60 圖2.3.3:車內網路傳輸技術:頻寬和Cost比較 60 圖2.3.4:車內網路傳輸技術:頻寬和傳輸資料大小比較 61 圖2.3.5:車內網路傳輸技術:頻寬和佈線長度比較 61 圖2.3.6:車內網路傳輸技術:頻寬、佈線長度、價格、傳輸資料量比較 62 圖2.3.7:Market Communication System View 63 圖2.3.8:車內網路架構變化 63 圖2.3.9:車內網路系統 63 圖2.3.10:車內網路拓墣發展 64 圖2.3.11:PoDL在車載乙太網路的應用 65 圖2.3.12:PoDL傳輸功率等級區分 65 圖2.3.13:Multi-Gigabit車載乙太網路未來在車內網路的應用 66 圖2.3.14:Example of Domain Automotive Networks 68 圖2.3.15:Example of Zonal Automotive Networks 68 圖2.3.16:傳統電子、電氣架構 69 圖2.3.17:以域為基礎的電子、電氣架構 70 圖2.3.18:以區為基礎的電子、電氣架構 71 圖2.3.19:Connected Car Technologies, Future Trends 75 圖2.3.20:Example ASIL Assignment in a Car 76 圖2.3.21:ASIL評級 77 圖2.3.22:功能安全設計開發流程 78 圖2.3.23:Hype Cycle for Connected Vehicle and Smart Mobility, 2019 79 圖2.3.24:Hype Cycle for Connected Vehicles, 2018 80 圖2.3.25:Hype Cycle for Enterprise Networking, 2019 80 圖2.3.26:Hype Cycle for Cloud, 2019 81 圖2.3.27:Hype Cycle for the Future of CSP Wireless Networks Infrastructure, 2019 82 圖2.3.28:Hype Cycle for Enterprise Networking and Communications, 2018 82 圖3.1.2.1:車聯網PEST分析結果-Political & Economic portions 89 圖3.1.2.2:車聯網PEST分析結果-Social & Technological portions 90 圖3.1.2.3:車載乙太網路PEST分析結果 92 圖3.2.2.1:波特五力分析結果-供應商議價能力、顧客議價能力、替代品威脅 95 圖3.2.2.2:波特五力分析結果-潛在競爭者威脅、現有廠商之競爭 96 圖3.2.2.3:五力分析–雷達圖 97 圖3.4.2.1:車載乙太網路與現有車載網路的互補與競爭分析結果 104 圖3.5.2.1:波士頓矩陣(BCG)分析結果 107 圖4.1.1.1:T-Plan之內外部驅動及產品線規劃 110 圖4.1.2.1:T-Plan之產品線規劃與關鍵技術 116 圖4.1.2.2:個案事業部規劃之未來研發藍圖(Period-1~Period-5) 123 圖4.2.1:道斯矩陣(SWOT)分析結果 – SO可利用策略 124 圖4.2.2:道斯矩陣(SWOT)分析結果 – WO可改進策略 129 圖4.2.3:道斯矩陣(SWOT)分析結果 – ST 消除威脅策略 136 圖4.2.4:道斯矩陣(SWOT)分析結果 – WT 劣勢及威脅迴避策略 139 圖4.3.1:Ethernet Switch 2024年TAM、SAM、SOM預估 142 圖4.3.2:Automotive Ethernet Switch 2024年TAM、SAM、SOM預估 142 圖4.3.3:個案公司2017-2019產品結構 144 圖5.1.1:研發策略藍圖流程 146

    [1] Anthea Chuang, 自駕車發展難如登天, in EE Times Taiwan. 2019, EE Times: EE Times Taiwan.
    [2] 徐志偉, 楊., 運用智能感知技術於自駕車之行人防護應用. Journal of Information and Communication Technology, 2018.
    [3] Mark Goldstein, Aerospace Arizona Summit Autonomous Vehicles Presentation. 2018: Slideshare.
    [4] 楊方儒、張詠晴, 要建立智慧城市,必須靠著「打群架」模式來相互合作, in LINE TODAY科技. 2019, LINE TODAY NEWS: Taiwan.
    [5] LITEON, 光寶科技攜智慧車聯應用亮相CES, in LITEON NEWS. 2019, LITEON: Taiwan.
    [6] Bob Metcalfe, Metcalfe’s Law after 40 Years of Ethernet. Computer ( Volume: 46 , Issue: 12 , Dec. 2013 ), 2013: p. B. Metcalfe, "Metcalfe's Law after 40 Years of Ethernet," in Computer, vol. 46, no. 12, pp. 26-31, Dec. 2013, doi: 10.1109/MC.2013.374.
    [7] 吳傳輝. 台灣大哥大 5G啟動智慧城市發展. 2019.
    [8] 中央社, Gartner:自駕車要上路,5G 網路最關鍵, in TechNews 科技新報. 2018, TechNews 科技新報: TechNews 科技新報.
    [9] Steve Blank, B.D., The startup owner's manual: The step-by-step guide for building a great company. 2012, John Wiley & Sons, Inc.,: Hoboken, New Jersey.
    [10] Nations, U., THE 17 GOALS, E.a.S. Affairs, Editor. 2015, United Nations: United Nations Website.
    [11] 財團法人農業科技研究院農業政策研究中心, 聯合國2030永續發展目標(SDGs)簡介(201706). 2016, 財團法人農業科技研究院農業政策研究中心: 財團法人農業科技研究院農業政策研究中心.
    [12] 陳嘉茹, 智慧交通發展趨勢與技術方向, in DOIT經濟部技術處-產業技術評析. 2019, DOIT經濟部技術處: DOIT經濟部技術處.
    [13] Riccardo Coppola, M.M. and Connected Car: Technologies, Issues, Future Trends. ACM JournalsACM Computing Surveys, 2016. Vol.49, No.3.
    [14] RedCHALK. ford-deal-blackberry-becomes-front-center-player-connected-car-industry-full. 2019.
    [15] 經濟部工業局智慧電子產業計畫推動辦公室, 智慧車電產業現況. 2018-7-12, 經濟部工業局智慧電子產業計畫推動辦公室: 經濟部工業局智慧電子產業計畫推動辦公室.
    [16] MarketsandMarkets. Automotive Ethernet Market by Component (Hardware, Software, and Services), Bandwidth, Application, Vehicle Type (Passenger Cars, Commercial Vehicles, and Farming and Off-highway Vehicles), and Region - Global Forecast to 2024. 2018.
    [17] Steve Carlson Trends in Automotive Networks. 2019. 9.
    [18] Sameh Boujelbene NBASE-T Making an Impact. 2018.
    [19] Ankita Bhutani, P.W. Enterprise Networking Market. 2018.
    [20] 邱明峻. 車廠及科技企業紛紛投入,攤開車聯網的專利地圖. 2017-12-29.
    [21] 陳建次, 透過產業趨勢與專利地圖解析ADAS 技術發展. ARTC 車輛中心企劃推廣處.
    [22] Jochen Klaus-Wagenbrenner, D1-04_KLAUS-Zonal_EE_Architecture, in 2019 IEEE Standards Association (IEEE SA) Ethernet & IP @ Automotive Technology Day, Visteon, Editor. 2019, IEEE: Detroit, MI. p. 1-20.
    [23] DIGITIMES Research, 【DIGITIMES Research】汽車主動安全需求增 2022年全球ADAS暨車用傳感器產值分別上看670億、220億美元, in 壹讀. 2018, DIGITIMES Research: 壹讀.
    [24] 鏈聞CHAINNEWS, 半導體 2020 展望:從應用到行業的全面復甦, in 鏈聞CHAINNEWS-半導體行業觀察. 2020, 鏈聞CHAINNEWS: 鏈聞CHAINNEWS.
    [25] 莊嶸騰, 車輛網路再進化-高速網路共通性平台. 車輛研測資訊, 2015. 108.
    [26] 維基百科, 控制器區域網路. 2020, 維基百科: 維基百科.
    [27] 成大資工, CAN. 2015, 成大資工: 成大資工Wiki.
    [28] Nwtwork, L.I., LIN Specification Package Revision 2.1. 2006, Local Interconnect Nwtwork. p. 191.
    [29] Network, L.I. LIN Overview - Target Application. 2013 [cited 2013 12-13].
    [30] 陸向陽, FlexRay技術標準之特性探析, in CTIMES. 2007: CTIMS Website.
    [31] FlexRay, FlexRay Communications System Protocol Specification Version 2.1 Revision A. 2005: FlexRay Website. p. 245.
    [32] Cooperation, M. MOST Introduction. 2016.
    [33] Cooperation, M., Bridging MOST to IEEE Standards, in IEEE 802 Plenary Meeting. 2012, IEEE: San Diego, California, USA. p. 27.
    [34] WIKIPEDIA, Ethernet frame. 2020, WIKIPEDIA: WIKIPEDIA Website.
    [35] WIKIPEDIA, MLT-3 encoding. 2020: WIKIPEDIA Website.
    [36] Porter, D. 100BASE-T1 Ethernet: the evolution of automotive networking. 2018. 11.
    [37] 蕭舜謙 Putting The Future In Motion With Automotive Ethernet And Mainstream Serial Buses. 2019. 40.
    [38] ALLIANCE, O., OPEN Alliance BroadR-Reach® (OABR) Physical Layer Transceiver Specification For Automotive Applications V3.2. 2014, OPEN ALLIANCE Org.: OPEN ALLIANCE org. Website. p. 88.
    [39] Dr. Ali Abaye, P.D. BROADR-REACH TECHNOLOGY: ENABLING ONE PAIR ETHERNET. 2013. 28.
    [40] ALLIANCE, O. Automotive Ethernet Technology. 2017.
    [41] 汽車電子設計, 車載乙太網部署的進度, in KKNEWS. 2019: KKNEWS Website.
    [42] James Scobie, M.S., ELECTRONIC CONTROL SYSTEM PARTITIONING IN THE AUTONOMOUS VEHICLE, in eeNews Automotive. 2015, eeNews: eeNews Wbsite.
    [43] Ian Cutress, Solving the Automotive Bandwidth Problem: Aquantia Partners with NVIDIA for 10GbE, in ANANDTECH. 2018, ANANDTECH: ANANDTECH Website.
    [44] Junko Yoshida, 新一代感測技術要讓ADAS車輛「看見」行人- in EET 電子工程專輯. 2020, EET 電子工程專輯: EET 電子工程專輯.
    [45] Junko Yoshida, ADAS雷達讓未來行車更安全?, in EET TAIWAN 電子工程專輯. 2018, EET TAIWAN: EET TAIWAN Website.
    [46] John Michalik, The Need for Multi-Gigabit Speeds for In-Vehicle Connectivity, in 2019 IEEE/SA Ethernet/IP @ Automative Technology Day Valens, Editor. 2019, Valens: Detroit, USA. p. 23.
    [47] IEEE, 10Mbps low cost (automotive suitable) Ethernet PHY, in Presentation during IEEE802.3 Plenary Meeting, IEEE, Editor. 2016, IEEE 802: San Diego, CA. p. 20.
    [48] Thomas Hogenmüller, 1 Twisted Pair 100 [C] Mbit/s Ethernet, in Call for Interest at IEEE802.3 Working Group 2014 Plenary Meeting, IEEE, Editor. 2014, IEEE: Beijing.
    [49] 世平集團, Broadccom汽车以太网BroadR-Reach PHY应用, in 大大通, 世平集團, Editor. 2019, 世平集團: 大大通首頁 > 博文專區 > 博文內容.
    [50] Hoai Hoang Bengtsson, M.H., Samuel Sigfridsson,, TSN ethernet as core network in the centralized E/E architecture - Challenges and possible solution, in 2019 IEEE/SA Ethernet/IP @ Automative Technology Day, V.C. Coporation, Editor. 2019, IEEE: Detroit, USA. p. 15.
    [51] Dwelley, D. IEEE Call For Interest - POWER OVER DATA LINES 2013. 15.
    [52] IEEE, 802.3bu-2016 - IEEE Standard for Ethernet--Amendment 8: Physical Layer and Management Parameters for Power over Data Lines (PoDL) of Single Balanced Twisted-Pair Ethernet. 2017, IEEE: IEEEXplore.
    [53] IEEE PoDL Tutorial. 2016. 20.
    [54] IEEE, <dg-draft-cfp-0319-v01.pdf>. 2019, IEEE: IEEEXploer. p. 2.
    [55] IEEE, dg-pannell-automotive-use-cases-0919-v04, in Use Cases – IEEE P802.1DG V0.4. 2019, IEEE: IEEE Xplore.
    [56] Waas, S.B.J.R.M.K.T., Automotive E/E-architecture enhancements by usage of ethernet TSN, in 2017 13th Workshop on Intelligent Solutions in Embedded Systems (WISES). 2017, IEEE: Hamburg, Germany. p. 5.
    [57] Mr. Rohan. Time-Sensitive Networking Market worth 606.0 Million USD by 2024. 2019.
    [58] Hendrik Schweppe, Y.R., Benjamin Weyl, Ludovic Apvrille, Dirk Scheuermann, Car2X Communication: Securing the Last Meter - A Cost-Effective Approach for Ensuring Trust in Car2X Applications Using In-Vehicle Symmetric Cryptography, in 2011 IEEE Vehicular Technology Conference (VTC Fall), IEEE, Editor., IEEE: San Francisco, CA.
    [59] Drue Freeman Following The Autonomous Vehicle Hype. 2020.
    [60] Mike Ramsey. Autonomous Vehicles Fall Into The Trough Of Disillusionment ... But That's Good. 2018.
    [61] 肖涵(涵暢). 從網絡接入層到ServiceMesh,螞蟻金服網絡代理的演進之路. 2019.
    [62] Vishal Sharma, Cloud Hype Cycle - 2019. 2019: Slideshare.
    [63] Sylvain Fabre Hype Cycle for the Future of CSP Wireless Networks Infrastructure, 2019. 2019. 84.
    [64] Raj Jain Wireless and Mobile Wireless and Mobile Networking: Networking: Facts, Statistics, and Trends Facts, Statistics, and Trends. 2018.
    [65] 維基百科, PEST分析. 2020, 維基百科: 維基百科.
    [66] 經濟部智慧財產局, 2017車聯網專利暨產業分析報告. 2017.
    [67] 維基百科, 五力分析. 2020, 維基百科: 維基百科.
    [68] 維基百科, 強弱危機分析. 2020, 維基百科: 維基百科.
    [69] 維基百科, BCG矩陣. 2020, 維基百科: 維基百科.
    [70] Goodinfo!台灣股市資訊網. 台灣股市資訊. 2020.
    [71] MBA智庫百科, 產品生命周期理論. 2016, MBA智庫百科.
    [72] Said, S.B.H., et al. SDN-based configuration solution for IEEE 802.1 time sensitive networking (TSN). February 2019.

    無法下載圖示 全文公開日期 2026/01/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE