簡易檢索 / 詳目顯示

研究生: 吳冠勳
Kuan-Hsun Wu
論文名稱: 應用於第五代行動通訊次6 GHz多輸入多輸出系統之手持裝置金屬背蓋寬頻天線設計
Broadband Antenna Design of Handheld Devices with Metal Housing for 5G MIMO Applications at Sub-6 GHz Band
指導教授: 林丁丙
Ding-Bing Lin
口試委員: 周錫增
Hsi-Tseng Chou
廖文照
Wen-Jiao Liao
林信標
Hsin-Piao Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 52
中文關鍵詞: 第五代行動通訊多輸入多輸出系統金屬背蓋電耦合磁耦合倒F天線槽孔天線
外文關鍵詞: 5G, MIMO system, metal housing, electric coupling, magnetic coupling, inverted-F Antenna, slot antenna
相關次數: 點閱:350下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對第五代行動通訊的通訊技術發展,全金屬背蓋手持式行動裝置天線做多天線系統之設計。由於內部天線擺放位置會受到金屬背蓋屏蔽效應,影響天線輻射特性,使得天線會有頻寬不足的問題。操作頻率於Sub-6 GHz的5G通訊之3.5 GHz頻帶,若僅使用倒F天線(Inverted-F Antenna;IFA) 頻寬約為140 MHz;而僅在金屬背蓋上切割肉眼看不見之寬0.1 mm極細槽孔天線(slit antenna) 頻寬約為100 MHz。為了增加頻寬,我們利用上層的倒F天線耦合激發金屬背蓋之槽孔天線,藉此將金屬背蓋作為天線之主輻射體,可增加天線輻射特性,提升天線工作頻寬。兩天線間有電耦合和磁耦合的產生,因此還可些微縮小兩天線的尺寸,藉由耦合效應設計倒F天線與槽孔相對間距及位置,頻寬可達到近300 MHz,以滿足5G藍圖之eMBB應用頻寬以達到規範頻寬。
      建構手持式多天線系統時,將天線擺在四個角落,並藉由擺放的相對位置的不同,而有不同的隔離度之分析,在相同的擺放位置下,不需加其他隔離器而有較佳之隔離效果,與基地台天線建構傳輸平台,結合本文提出之多天線系統以建構4x4多輸入多輸出系統。在此架構下,可提供行動通訊之軟硬體發展以強化第五代行動通訊之應用技術。


    The propose of this paper is aimed at the development of communication technology of the fifth generation (5G) mobile communication. We propose MIMO antenna system broadband antenna design for handheld devices with metal housing. Since the antenna is shielded by the metal housing, the antenna radiation characteristics are affected, causing insufficient bandwidth. The operating frequency we set is 3.5 GHz of 5G communication in Sub-6 GHz as a candidate spectrum for 5G network architecture in the world. In a handheld device with metal housing, if only the inverted-F antenna (IFA) is used, the bandwidth is about 140 MHz; and only the thin slot antenna with invisible width 0.1mm is used, the bandwidth is about 100 MHz. In order to broaden the bandwidth, we use the inverted F antenna at the upper layer to couple the slot antenna at the ground layer with the metal housing, increasing the radiation characteristics of the antenna and improving the operating bandwidth of the antenna. The relative position of the inverted F antenna and the slot antenna is the key of the coupling effect, causing the bandwidth reaches nearly 300 MHz to meet the 5G blueprint. The overall size of the two antennas can be slightly reduced by this kinds of mechanism as well.
    The antenna elements are placed at four corners in a handheld device to construct a MIMO antenna system. Since the space of handheld device is finite, isolation analysis is presented. We combine the proposed structure with the base station antenna to construct a MIMO communication platform, constructing a 4x4 MIMO system. Under this framework, the development of software and hardware for mobile communication can be provided to strengthen the application technology of the fifth generation mobile communication.

    中文摘要 i 英文摘要 ii 誌 謝 iv 目 錄 v 圖表索引 vi 第一章 緒論 1 1.1研究動機與背景 1 1.2論文架構 3 第二章 基本理論與文獻探討 4 2.1概述 4 2.2單/偶極天線 4 2.3 PIFA天線 11 2.4槽孔天線 15 2.5寬頻機制探討 18 2.6多輸入多輸出(MIMO)系統 20 第三章 金屬背蓋寬頻多天線設計 25 3.1金屬背蓋寬頻天線架構 25 3.1.1單一IFA天線架構 26 3.1.2 IFA與槽孔天線架構 27 3.2天線幾何架構之參數化探討與分析 31 3.3 4x4 MIMO多天線系統架構與隔離度探討 33 第四章 天線實測結果分析 38 4.1反射係數與頻寬實測分析 38 4.2輻射場型與效率實測分析 40 4.3 4x4 MIMO多天線系統與基地站通道量測 44 第五章 結論 48 參考文獻 49

    [1] 3GPP Release 16 (July 2018). 3GPP The Mobile Broadband Standard [Online]. Available: https://www.3gpp.org/release-16
    [2] Qualcomm, “Spectrum For 4G And 5G” [Online]. Available: https://www.qualcomm.com/media/.../files/spectrum-for-4g-and-5g.pdf
    [3] Techcrub, ” Screen To Body Ratio: 22 Smartphones With The Highest Screen To Body Ratio In 2019[Online]. Available: ”https://techcrub.com/smartphones-with-the-highest-screen-to-body-ratio/
    [4] Z. Li, Y. Rahmat-Samii, and T. Kaiponenz, “Bandwidth study of a dual band PIFA on a fixed substrate for wireless communication,” IEEE Trans. Antennas Propag. vol. 1, pp. 435-438, June 2003.
    [5] F. H. Chu, K. L. Wong, “Simple Folded Monopole Slot Antenna for Penta-Band Clamshell Mobile Phone Application,” IEEE Trans. Antennas Propag., vol. 57, no. 11, pp. 3680-3684, Nov. 2009.
    [6] B. Yuan, Y. Cao, G. Wang, and B. Cui, “Slot Antenna for Metal-Rimmed Mobile Handsets,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 1334-1337, 2012.
    [7] C. I. Lin, K. L. Wong, “Printed Monopole Slot Antenna for Internal Multiband Mobile Phone Antenna,” IEEE Trans. Antennas Propag., vol. 55, no. 12, pp. 3690-3697, Dec. 2007.
    [8] P. Vainikainen, J. Ollikainen, O. Kivekäs, and I. Kelander, “Resonator-Based Analysis of the Combination of Mobile Handset Antenna and Chassis,” IEEE Trans. Antennas Propag., vol. 50, no. 10, pp. 1433-1444, Oct. 2002.
    [9] B. Yuan, Y. Cao, and G. Wang, “ A Miniaturized Printed Slot Antenna for Six-Band Operation of Mobile Handsets,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 854-857, 2011.
    [10] C. K. Hsu, S. J. Chung, “Compact Antenna With U-Shaped Open-End Slot Structure for Multi-Band Handset Applications,” IEEE Trans. Antennas Propag., vol. 62, no. 2, pp. 929-932, Feb. 2014.
    [11] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd Ed., John Wiley and Sons, New York, 1998.
    [12] C. A. Balanis, Antenna Theory: Analysis and Design, 2nd Ed., John Wiley and Sons, New York, 1997.
    [13] W. Choi, S. Kwon, and B. Lee, “Ceramic chip antenna using meander conductor lines,” Electron. Letters, vol. 37, pp. 933-934, July 2001.
    [14] K.-L. Wong, G.-Y. Lee, and T.-W. Chiou, “A low-profile planar monopole antenna for multiband operation of mobile handsets,” IEEE Trans. Antennas Propag., vol. 51, no. 1, pp. 121-125, Jan. 2003.
    [15] R. Chair, K.M. Luk, and K.F. Lee, “Simulation of Bandwidth Enhancement on the Quarter-Wave Shorted Patch By Adding a Shorting Pin,” IEEE Trans. Antennas Propag., vol. 1, pp. 82-85, July 2001.
    [16] C. R. Rowell, R. D. Murch, “A capacitively loaded PIFA for compact mobile telephone handsets,” IEEE Trans. Antennas Propag., vol. 45, no. 5, pp. 837-842, May 1997.
    [17] J. X. Yun, R. G. Vaughan, “Open slot antenna in a small ground plane,” IET Microwaves Antennas and Propagation, vol. 5, pp. 200-213, Dec. 2009.
    [18] L. Zhu, K. Wu, “Complete Circuit Model of Microstrip-Fed Slot Radiator: Theory and Experiments,” IEEE Microwave and Guided Wave Letters, vol. 9, no. 8, pp. 305-307, Aug. 1999.
    [19] Y. M. M. Antar, A. K. Bhattcharyya, and A. Ittipiboon, “Microstripline -Slotline Transition Analysis Using the Spectral Domain Technique,” IEEE Trans. Micro. and Tech. vol. 40, no. 3, pp. 515-523, Mar. 1992.
    [20] N. Takemura, “Tunable Inverted-L Antenna With Split-Ring Resonator Structure for Mobile Phones” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1891-1897, April 2013.
    [21] A. Cabedo, J. Anguera, C. Picher, M. Ribó, and C. Puente, “Multiband Handset Antenna Combining a PIFA, Slots, and Ground Plane Modes,” IEEE Trans. Antennas Propag., vol. 57, no. 9, pp. 2526-2533, Sep. 2009.
    [22] R. Hossa, A. Byndas, M. Bialkowski, “Improvement of compact terminal antenna performance by incorporating open-end slots in ground plane,” IEEE Micro. and Wireless Comp. Letters, vol. 14, no.6, pp. 283-285, June 2004.
    [23] C. G. Montgomery, R. H. Dicke, and E. M. Purcell, Principle of Microwave Circuits, Mcgraw - Hill, New York, 1948.
    [24] K.-L. Wong, C.-Y. Tsai, and J.-Y. Lu, ‘‘Two asymmetrically mirroredgap-coupled loop antennas as a compact building block for eight-antennaMIMO array in the future smartphone,’’IEEE Trans. Antennas Propag.,vol. 65, no. 4, pp. 1765–1778, Apr. 2017.
    [25] M. Y. Li, Y. L. Ban, Z. Q. Xu and G. Wu, “Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications”, IEEE transactions on antennas and propagation, vol. 64, no.9, pp. 3820-3830, Sep. 2016.
    [26] Y. Li, C. Sim, Y. Luo and G. Yang, "12-Port 5G Massive MIMO Antenna Array in Sub-6GHz Mobile Handset for LTE Bands 42/43/46 Applications," in IEEE Access, vol. 6, pp. 344-354, 2018.
    [27] K. Wong, C. Tsai, J. Lu, D. Chian and W. Li, "Compact eight MIMO antennas for 5G smartphones and their MIMO capacity verification," 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), Seoul, 2016, pp. 1054-1056.
    [28] J. Lu, H. Chang and K. Wong, "10-antenna array in the smartphone for the 3.6-GHz MIMO operation," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, 2015, pp. 1220-1221.
    [29] K. Wong, J. Lu, L. Chen, W. Li, Y. Ban and C. Li, "16-Antenna array in the smartphone for the 3.5-GHz MIMO operation," 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, 2015, pp. 1-3.
    [30] J. Lu, K. Wong and W. Li, "Compact eight-antenna array in the smartphone for the 3.5-GHz LTE 8 × 8 MIMO operation," 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), Kaohsiung, 2016, pp. 323-324.

    QR CODE