簡易檢索 / 詳目顯示

研究生: 王信樵
Wang
論文名稱: 基於兩階段分群框架的長期用電預測
Long-term Power Consumption Prediction with Two-stage Clustering Framework
指導教授: 陳怡伶
Yi-Ling Chen
口試委員: 陳玉芬
Yu-Fen Chen
戴碧如
Bi-Ru Dai
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 48
中文關鍵詞: 用電預測模型選擇兩階段分群框架
外文關鍵詞: Power consumption forecasting, Model selection, Two-stage clustering framework
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iv Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vi Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .viii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .x List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 3.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 3.2 Two-Stage Clustering Algorithm Based on K-means . . . . . . . . . . .13 3.2.1 Stage One of TSCF . . . . . . . . . . . . . . . . . . . . . . . . .13 3.2.2 Stage Two of TSCF . . . . . . . . . . . . . . . . . . . . . . . . .15 3.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 3.4 Prediction Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 4.1.1 Taiwan’s Power Consumption Data . . . . . . . . . . . . . . . .19 4.1.2 Household Power Consumption Data . . . . . . . . . . . . . . .20 4.1.3 USA’s Power Consumption Data . . . . . . . . . . . . . . . . . .20 4.2 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 4.3 Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . .21 4.3.1 Time Series Dataset . . . . . . . . . . . . . . . . . . . . . . . .21 4.3.2 Ablation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 4.3.3 Comparison of Clustering Methods . . . . . . . . . . . . . . . .28 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

    [1]WU, Yi-Leh; AGRAWAL, Divyakant; EL ABBADI, Amr. A comparison of DFT and DWT based similarity search in time-series databases. In: Proceedings of the ninth international conference on Information and knowledge management. ACM, 2000. p. 488-495.

    [2]ZHANG, Chen, et al. StockAssIstant: A Stock AI Assistant for Reliability Modeling of Stock Comments. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining. ACM, 2018. p. 2710-2719.

    [3]LI, Chuanbin, et al. Predicting short-term electricity demand by combining the advantages of arma and xgboost in fog computing environment. Wireless Communications and Mobile Computing, 2018, 2018.

    [4]ZHOU, Ruijin, et al. Building energy use prediction using time series analysis. In: 2013 IEEE 6th International Conference on Service-Oriented Computing and Applications. IEEE, 2013. p. 309-313.

    [5]WANG, Weizeng, et al. Electricity Consumption Prediction Using XGBoost Based on Discrete Wavelet Transform. DEStech Transactions on Computer Science and Engineering, 2017, aiea.

    [6]ZHANG, Senlin, et al. Data-based line trip fault prediction in power systems using LSTM networks and SVM. IEEE Access, 2017, 6: 7675-7686.

    [7]QIU, Xueheng, et al. Ensemble deep learning for regression and time series forecasting. In: 2014 IEEE symposium on computational intelligence in ensemble learning (CIEL). IEEE, 2014. p. 1-6.

    [8]KOPRINSKA, Irena; WU, Dengsong; WANG, Zheng. Convolutional neural networks for energy time series forecasting. In: 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 2018. p. 1-8.

    [9]ZHAO, Yi, et al. Forecasting Wavelet Transformed Time Series with Attentive Neural Networks. In: 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 2018. p. 1452-1457.

    [10]MACQUEEN, James, et al. Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. 1967. p. 281-297.

    [11]HOCHREITER, Sepp; SCHMIDHUBER, Jürgen. Long short-term memory. Neural computation, 1997, 9.8: 1735-1780.

    [12]XU, Kelvin, et al. Show, attend and tell: Neural image caption generation with visual attention. In: International conference on machine learning. 2015. p. 2048-2057.

    [13]CHEN, Tianqi; GUESTRIN, Carlos. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. ACM, 2016. p. 785-794.

    [14]https://xgboost.readthedocs.io/en/latest/python/python\_api.html\#module-xgboost.sklearn

    [15]BREIMAN, Leo. Random forests. Machine learning, 2001, 45.1: 5-32.

    [16]HUANG, Norden E., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454.1971: 903-995.

    [17]Cheng-Hsiang Hu.(2019). Forecasting Time Series for Electricity Consumption Data Using Dynamic Weight Ensemble Model. Unpublished doctoral dissertation, Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei.

    [18]https://data.world/databeats/household-power-consumption

    [19]https://www.kaggle.com/robikscube/hourly-energy-consumption/version/3

    [20]CHOLLET, François, et al. Keras. 2015. https://github.com/fchollet/keras

    [21]ABADI, Martín, et al. Tensorflow: A system for large-scale machine learning. In: 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16). 2016. p. 265-283.

    [22]ZHANG, Xike, et al. A hybrid model for annual runoff time series forecasting using elman neural network with ensemble empirical mode decomposition. Water, 2018, 10.4: 416.

    [23]ZHANG, Yagang, et al. Improved wind speed prediction using empirical mode decomposition. Advances in Electrical and Computer Engineering, 2018, 18.2: 3-11.

    [24]KHOSRAVI, A.; MACHADO, L.; NUNES, R. O. Time-series prediction of wind speed using machine learning algorithms: A case study Osorio wind farm, Brazil. Applied energy, 2018, 224: 550-566.

    [25]WANG, Zheng, et al. Static and dynamic ensembles of neural networks for solar power forecasting. In: 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 2018. p. 1-8.

    [26]PHAM, Duc Truong; DIMOV, Stefan S.; NGUYEN, Chi D. Selection of K in K-means clustering. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2005, 219.1: 103-119.

    無法下載圖示 全文公開日期 2025/02/26 (校內網路)
    全文公開日期 2025/02/26 (校外網路)
    全文公開日期 2025/02/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE