簡易檢索 / 詳目顯示

研究生: 許博凱
Po-kai Hsu
論文名稱: 微型微生物燃料電池
Micron microbial fuel cell
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 陳品銓
Pin-Chuan Chen
王金燦
Chin-Tsan Wang
洪子倫
Tzyy-Leng Horng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 102
中文關鍵詞: 微型微生物燃料電池微柱微混合器
外文關鍵詞: μMFC, Micropillars, Micromixers
相關次數: 點閱:265下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現今微機電製程 (Micro-electro-mechanical system, MEMS) 發展成熟,已被運用在機械、電子、光學、生醫檢測等方面。透過MEMS可將微生物燃料電池 (Microbial fuel cell, MFC) 微小化,微小化之優點為反應快速、所需陽/陰極液量少、微小化後將有機會可植入人體內或是各種不易更換電池之小型設備做長期之供電。
本研究利用微影製程 (Photolithography) 製作出SU-8矽晶圓母模後再進行軟微影 (Soft lithography) ,利用聚二甲基矽氧烷(Polydimethylsiloxane, PDMS) 複製母模上之微結構,脫模後使用電子束蒸鍍鉻 (Cr) 及銀 (Ag) 金屬層做為陽/陰極電極。
微型微生物燃料電池電力輸出不佳,因此本研究嘗試將微型混合器 (Micromixer) 以及微柱 (Micropillar) 加入陽極槽體內以使陽極液充分混合且透過微柱結構增加電極表面積,藉此提升電能輸出;同時本研究也探討加入電子傳遞介質對微生物燃料電池輸出之影響。
本研究之微生物使用酵母菌,並且在微生物燃料電池中加入微結構以及陽極液中添加電子傳遞介質,可獲得最大電流66.545μA/cm2、最大功率3.284μW/cm2以及內阻值2.569kΩ。


Nowadays, the development of Micro-electro-mechanical system (MEMS) is mature, which has been used in machinery, electronics, optics, biomedical examinations and other fields. Through MEMS, microbial fuel cell(MFC) can be miniaturized. Several advantages of miniaturization includes rapid reaction, reduction of anolyte/catholyte consumption and suitable for body implantation as a long term power source for implanted bioMEMS devices.
This study use photolithography process to manufacture SU-8 silicon wafer as mold. After that PDMS will be poured onto the mold to replicate the microstructures of the mold. Finally, E-Beam evaporation process is used to deposit Cr and Ag layers as electrodes.
The performance of μMFC is not sufficient for practical applications. This study embed micromixers and micropillars into anode for mixing of anolyte and increasing surface area to improve electricity output. Also, the influence of addition of electron mediator is discussed.
In this study, s. cerevisiae is used as the anode microorganism in the μMFC with embedded micromixers and micropillars. The μMFC can generate maximum current density of 66.545μA/cm2, maximum power density of 3.284μW/cm2 and reduce the internal internal resistance to 2.569kΩ.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.3.1 微型微生物燃料電池 3 1.3.2 影響微型微生物燃料電池之因素及參數 11 1.4 文獻整理心得 15 1.5 研究目的 16 第二章 微生物燃料電池組成與原理 18 2.1 微生物燃料電池之組成 18 2.2 微生物燃料電池工作原理 20 2.3 微生物燃料電池之性能 20 2.3.1 理論電位 20 2.3.2 極化曲線與功率曲線 23 第三章 實驗材料方法 25 3.1 實驗流程 25 3.2 實驗器材 26 3.2.1 藥品試劑 26 3.2.2 菌種 27 3.3 實驗儀器 27 3.4 微生物燃料電池架構及製造 31 3.4.1 SU-8 矽晶圓母模製作 31 3.4.2 光罩設計 39 3.4.3 PDMS軟微影(翻模) 42 3.4.4 PDMS表面改質 44 3.4.5 PDMS電子束蒸鍍 46 3.4.6 質子交換膜清洗及保存 46 3.5 微生物燃料電池架構 47 3.6 實驗架構 50 第四章 結果與討論 51 4.1 PDMS改質後接觸角變化 51 4.2 開路電位 53 4.1.1 微柱及微混合器 (Type-A) 56 4.1.2 僅微混合器 (Type-B) 56 4.1.3 僅微柱 (Type-C) 57 4.1.4 無微結構 (Type-D) 57 4.1.5 微柱及微混合器並加入電子傳遞介質 (Type-A with MB) 58 4.1.6 僅微混合器加入電子傳遞介質 (Type-B with MB) 58 4.3 極化曲線與功率密度 60 4.2.1 具微柱及微混合器 (Type-A) 61 4.2.2 僅微混合器 (Type-B) 62 4.2.3 僅微柱 (Type-C) 63 4.2.4 無微結構 (Type-D) 64 4.2.5 微柱及微混合器並加入電子傳遞介質 (Type-A with MB) 65 4.2.6 僅微混合器並加入電子傳遞介質 (Type-B with MB) 66 4.2.7 極化曲線及功率曲線比較-無添加電子傳遞介質 67 4.2.8 極化曲線及功率曲線比較-加入電子傳遞介質 72 4.4 內阻值 76 4.3.1 具微柱及微混合器 (Type-A) 76 4.3.2 僅微混合器 (Type-B) 77 4.3.3 僅微柱 (Type-C) 77 4.3.4 無微結構 (Type-D) 77 4.3.5 微柱及微混合器並加入電子傳遞介質 (Type-A with MB) 78 4.3.6 僅微混合器並加入電子傳遞介質 (Type-B with MB) 78 4.3.7 內阻比較 78 第五章 結論 82 第六章 未來研究方向 85 參考文獻 86

[1] 胡子揚, “小型微生物燃料電池”, 國立宜蘭大學機械與機電工程學系碩士論文, 2011.
[2] F. Qian, M. Baum, Q. Gu and D. E. Morse, Lab Chip, ”A 1.5 μL microbial fuel cell for on-chip bioelectricity generation”, Vol. 9, pp. 3076-3081, 2009.
[3] C.-P.-B. Siu and M. Chiao, ”A Microfabricated PDMS Microbial Fuel Cell”, Journal of Microelectromechanical Systems, Vol. 17, pp. 1329-1341, 2009.
[4] M. Chiao, K. B Lam and L. Lin, “Micromachined microbial and photosynthetic fuel cells”, Journal of Micromechanics and Microengineering, Vol. 16, pp. 2547-2553, 2006.
[5] S. Choi and J. Chae, “An array of microliter-sized microbial fuel cells generating 100 μW of power”, Sensors and Actuators A, Vol. 177, pp. 10-15, 2012.
[6] S. Choi and J. Chae, “Optimal biofilm formation and power generation in a micro-sized microbial fuel cell (MFC)”, Sensors and Actuators A, Vol. 195, pp. 206-212, 2013.
[7] F. Qian, Z. He, M. P. Thelen and Y. Li, “A microfluidic microbial fuel cell fabricated by soft lithography”, Bioresource Technology, Vol. 102, pp. 5836-5840, 2011.
[8] A. Fraiwan, S. Sundermier, D. Han, A. Steckl, D. Hassett, and S. Choi, “Challenges in development and operation of MEMS microial fuel cells”, Power MEMS 2012, Dec. 2-5, , Atlanta, USA, pp. 383-386, 2012.
[9] H. Ren, C. I.Torres, P. Parameswaran, B. E. Rittmann, J. Chae, “Improved current and power density with a micro-scale microbial fuel cell due to a small characteristic length”, Biosensors and Bioelectronics, Vol. 61, pp. 587-592, 2014.
[10] A. ElMekawy, H. M. Hegab, X. Dominguez-Benetton, D. Pant, “Internal resistance of microfluidic microbial fuel cell: Challenges and potential opportunities”, Bioresource Technology, Vol. 142, pp. 672-682, 2013.
[11] K. Rabaey and W. Verstraete, “Microbial fuel cells: novel biotechnology for energy generation”, Trends in Biotechnology, Vol.23, pp. 291-298, 2005.
[12] Z. Du, H. Li and T. Gu, “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy”, Biotechnology Advances, Vol. 25, pp. 464-482 ,2007.
[13] N. T. Trinh, J. H. Park, and B.-W. Kim, “Increased generation of electricity in a microbial fuel cell using Geobacter sulfurreducens”, Korean Journal of Chemical Engineering, Vol. 26, pp. 748-753, 2009.
[14] H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS”, Sensors and Actuators A, Vol. 64, pp. 33-39, 1998.
[15] DATA Sheet for SU-8 2000 Permanent Epoxy Negative Photoresist Processing Guidelines for SU-8 2025, SU-8 2035, SU-8 2050 and SU-8 2075. Released by MICRO-CHEM. Corp.
[16] 莊勝雄, 游士諄, 林明俊, 周祖亮, ”SU-8 光阻在矽晶圓基材上製作微流道面板之研究”, 南亞學報第二十六期, pp.23-36, 2006.
[17] DATA Sheet for NANOTM SU-8 Negative Tone Photoresists, Formulations 2002-2025. Released by MICRO-CHEM. Corp. [18] R. Y. Zhang, J. Yangjun, Q. H. Jin, J. L. Zhao, X. L. Zheng, “A review on PDMS surface modification”, Sciencepaper Online, 2008.
[19] V.-M. Graubner, R. Jordan, O. Nuyken, T. Lippert, M. Hauer, B. Schnyder, A. Wokaun, “Incubation and ablation behavior of poly(dimethylsiloxane) for 66 nm irradiation”, Applied Surface Science, Vol. 197-198, pp. 786-790, 2002.
[20] Y. Berdichevsky, J. Khandurina, A. Guttman, Y.-H. Lo, “UV/ozone modification of poly(dimethylsiloxane) microfluidic channels”, Sensors and Actuators B, Vol. 97, pp. 402-408, 2004.
[21] 蔡明勳, ”光學凝血檢測儀之晶片的開發研究”, 國立中正大學機械工程學系研究所碩士論文, 2013.
[22] 布魯斯.洛根(Bruce E. Logan)著, 馮玉杰, 王鑫等譯, “微生物燃料電池 MICROBIAL FUEL CELLS”, 化學工業出版社, 2009年10月.
[23] S. Choi, H.-S. Lee, Y. Yang, P. Parameswaran, C. I. Torres, B. E. Rittmann and J. Chae, “A μL-scale micromachined microbial fuel cell having high power density”, Lab on a Chip, Vol. 11, pp. 1110-1117, 2011.
[24] D. H. Park, J. G. Zeikus, “Improved fuel cell and electrode designs for producing electricity from microbial degradation”, Biotechnology and Bioengineering, Vol. 81, pp. 348-355, 2003.
[25] G. M. Delaney, H. P. Bennetto, J. R. Mason, S. D. Roller, J. L. Stirling, “Electron-transfer coupling in microbial fuel cells. 2. performance of fuel cells containing selected microorganism—mediator—substrate combinations”, Journal of Chemical Technology and Biotechnology. Biotechnology, Vol. 34, pp. 13-27, 1984.

QR CODE