簡易檢索 / 詳目顯示

研究生: 楊勝富
Sheng-fu Yang
論文名稱: 金(鍺)/磷化鎵晶片經合金化製程後的微結構研究
The study of the microstructure of Au(Ge)/GaP wafer after thermal processes
指導教授: 鄭偉鈞
Wei-chun Cheng
口試委員: 周賢鎧
Xian-kai Zhou
鄧及人
Ji-ren Deng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 89
中文關鍵詞: 磷化鎵
外文關鍵詞: GaP
相關次數: 點閱:202下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為研究金(鍺)/磷化鎵(111)晶片經合金化製程後的微結構變化。實驗方式為使用熱蒸鍍法依序蒸鍍沈積Au、AuGe及Au三層金屬薄膜於磷化鎵晶片(111),再利用快速升降溫爐及傳統管狀爐作合金化熱處理。使用電流-電壓特性曲線分析其金屬/半導體接觸性質,再以X光繞射儀、高解析穿透式電子顯微鏡、歐傑電子能譜儀及EDS成分分析儀等儀器,分析此合金層經合金化處理後的材料成份及微觀結構。
    試片經電流-電壓曲線分析結果,發現試片經450或500℃的快速升降溫爐熱處理與在485或520℃的傳統管狀爐熱處理,會有較小的順向偏壓值,尤其以500℃快速升降溫爐處理的試片有最低的順向偏壓值。
    由XRD分析可知,剛沈積後金屬薄膜層為Au與γ-AuGe兩合金相的混合組織;當試片經快速升降溫爐350或400℃熱處理後,金屬薄膜層之相結構與剛沈積後X-ray分析結果相似;當快速升降溫爐之熱處理溫度升至450或500℃時,此時金屬薄膜層之相結構即轉變成為Au與β-AuGa兩合金相的混合結構;而試片經傳統管狀爐485或520℃熱處理與後者的分析結果相似。
    從AES的縱深分佈觀察到試片經傳統管狀爐520℃熱處理15分鐘後,發現鍺有往磷化鎵內部及金屬層擴散的趨勢,且由HRTEM的高解析晶格影像計算發現有鍺磷化合物於磷化鎵晶片內生成。而此鍺磷化合物具FCC晶格,其晶格常數a = 5.463Å,且此鍺磷化合物與磷化鎵晶片有方向關係,其方向關係為立方晶對立方晶的對應關係。


    The object of this thesis was to study the metallization layers of Au/AuGe/Au on n-type GaP wafers. The Au/AuGe/Au layers were deposited onto the GaP wafers by a thermal evaporation method. After the evaporation process the GaP wafers were annealed in either traditional tube furnace or rapid thermal annealing (RTA) furnace for the alloying processes. We measured the I-V curves of the wafers for the Ohmic contact tests and compared the results with those analyses in the material testing equipments such as XRD, TEM, AES, and EDS to figure out the relationships between Ohmic contact and the changes in the microstructure of the Au/GaP interface.
    The XRD analysis in the Au/AuGe/Au layers on the GaP wafers indicated that the metal layers are mixed with Au and γ-AuGe phases in the as-deposited condition and RTA processes at 350 and 400 oC. The metal layers are Au and -AuGa phases in the traditional annealing process at 485 and 520 oC and RTA processes at 450 and 500 oC.
    We observed the sample annealed in the traditional tube furnace at 520 oC for 15 minutes by using lattice image methods to identify the phase of GeP compound. We observed the sample after annealing in the process of the traditional tube furnace at 520 oC for 15 minutes form the GeP compound belongs to face-centered cubic in the Bravais lattices. The lattice constant of the GeP is about a=5.463Å for comparing it with that of GaP. The lattice of the GeP compound has cubic to cubic orientation relationships with that of GaP from the TEM observation.

    第一章 前言 1 第二章 文獻回顧 3 2.1. 電子轉移機制 3 2.2. 發光二極體的注入機制 4 2.3. 合金接觸 6 2.4. 歐姆接觸與蕭基接觸 7 2.5. 金與磷化鎵相變化機制 8 2.6. 金鍺與鎳/金鍺系統 9 第三章 實驗設備與原理 15 3.1. 高溫蒸鍍系統 15 3.2. 維明LED-628點測機 16 3.3. X光繞射分析儀 16 3.3.1. 對稱性布拉格繞射法 17 3.3.2. 低掠角X光繞射 17 3.4. 歐傑電子能譜儀 18 3.5. 穿透式電子顯微鏡 20 3.5.1. 穿透式電子顯微鏡結構 20 3.5.2. 穿透式電子顯微鏡成像原理 23 第四章 實驗步驟 32 4.1. 實驗流程 32 4.2. 薄膜蒸鍍 32 4.3. 熱處理方式 33 4.4. 維明LED-628點測機量測 33 4.5. X光繞射儀分析 34 4.6. 歐傑電子能譜儀 35 4.7. XTEM試片製作 35 4.8. 高解析穿透式電子顯微鏡 37 4.9. EDS成分分析 38 第五章 結果與討論 42 5.1. LED-628光電性量測 42 5.2. X光繞射分析 44 5.3. HRTEM分析 46 5.3.1. 剛沈積金屬薄膜 46 5.3.2. 快速升降溫爐350℃熱處理 47 5.3.3. 快速升降溫爐400℃熱處理 47 5.3.4. 快速升降溫爐450℃熱處理 48 5.3.5. 快速升降溫爐500℃熱處理 48 5.3.6. 傳統管狀爐485℃熱處理 49 5.3.7. 傳統管狀爐520℃熱處理 50 5.4. AES分析 50 5.4.1. 剛沈積金屬薄膜 51 5.4.2. 快速升降溫爐450℃熱處理 52 5.4.3. 快速升降溫爐500℃熱處理 52 5.4.4. 傳統管狀爐520℃熱處理 53 5.5. EDS分析 53 第六章 結論 83 參考文獻 85 附錄 88

    1. Vanderwater, D.A. (Hewlett-Packard Co); Tan, I.-H.; Hofler, G.E.; Defevere, D.C.; Kish, F.A., “High brightness AlGaInP light-emitting diodes,”Proceedings of the IEEE, vol. 85, No.11, pp.1752–1764 (1997).
    2. Streubel, Klaus Linder, Norbert; Wirth, Ralph; Jaeger, Arndt, “High brightness AlGaInP light-emitting diodes,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, No.2, pp. 321–332(2002).
    3. A. Piotrowska, A. Guivarćh, and G. Pelous, Solid-State Electronics Vol. 26, No.3, 179 (1983).
    4. Donald A. Neamen, Semiconductor Physics and Devices-Basic principle(1992).
    5. Yicheng Lu, T. S. Kalkur, and C. A. Paz de Araujo, J. Electrochem. Soc. Vol. 136 No. 10, 3123 (1989).
    6. A. Katz, P. M. Thomas, S. N. G. Chu, J. W. Lee, and W. C. Dautremont-Smith, J. Appl. Phys. 66, (5) 2056 (1989).
    7. 莊達人,”VLSI製程技術”,高立出版社 (1997)。
    8. 余合興,”光電子學-原理及應用”,中央圖書出版社出版 (1985)。
    9. Hong Xiao, ”Introduction to Semiconductor Manufacturing Technology”, Prentice Hall (2001).
    10. V. Malina,”Vacuum-deposition ohmic contacts to n-type GaP”, Thin Solid Films.125(1985).
    11. W. Schottky, Naturwissenschaften 26, 843 (1938).
    12. Hadis Morkoc, Nitride Semiconductors and Devices, Springer, 196 (1999).
    13. 張景學、吳昌崙,”半導體製造技術”,文京出版 (1998)。
    14. Ronald A. Ginley, and D. D. L. Chung, Solid-State Electranics Vol. 27 No. 2 (1984).
    15. B. P¢ecz, R. Veresegyh¢azy, G. Radn¢oczi, I. Mojzes, O. Geszti, and Gy. Vincze, J. Appl. Phys. 70, 1 (1991).
    16. A. Pioreowska, E. Kaminska, A. Barcz and J. Adamczeqska, Thin Solid Films 130, 231 (1985).
    17. Shuichi Komatsu, Masako Nakahashi, and Yoshiyasu Koike, J. J. Appl. Phy. 20, 549 (1981).
    18. Taeil Kim, and D. D. L. Chung, Thin Solid Films, 147, 177 (1987)
    19.T. S. Kuan, P. E. Batson, T. N. Jackson, H. Rupprecht, and E. L. Wilkie, J. Appl. Phys. 54, 12 (1983).
    20.R. P. Gupta, J. Wuerfl, H. L. Hartnagel, W. S. Khokle, IEE PROCEEDINGS.Vol.135, 2(1988).
    21. 李正中,”薄膜光學與鍍膜技術”,藝軒圖書出版社(1999)。
    22. 汪建民,”材料分析”,中國材料科學學會,(1998)。
    23. 吳泰伯、許樹恩, “X光繞射原理與材料結構分析”,中國材料科學學會 (1996)。
    24. 真空技術與應用”,行政院國家科學委員會精密儀器發展中心(2001)。
    25. Omicron Ion Source Technical Manual, v2.3.
    26. 潘扶民,電子月刊1卷2期96-103(1995)。
    27. D. Briggs, M. P. Seah, “Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy ”,John Wiley & Sons (1994).
    28. 陳力俊等,”材料電子顯微鏡學”,國科會精儀中心 (1997)。
    29. David B. Williams and vC. Barry Carter, “Transmission Electron Microscopy” PLENUM (1996).
    30. Lawrence E. Davis etc., “Handbook of Auger Electron Spectroscopy” (1976).
    31. D. Briggs, M. P. Seah, “Practical Surface Analysis Vol. 1”, Wiley (1990).
    32. 潘扶民,國科會儀器總覽1-4(1998)。
    33. 潘扶民,科儀新知11卷2期8-22(1989)。
    34. Gatan公司, “Precision ion polishing system(PIPS)型錄”。
    35. R. A. Donaton, K. Maex, A. Vantomme, G. Langouche, Y. Morciaux, A. St. Amour, and J. C. Sturm, Appl. Phys. Lett. 70, 1266 (1997).
    36. L. Hultman, A. Robertsson, and H. T. G. Hentzell, J. Appl. Phys. 62(9),3647 (1987).
    37.Z. Ma, and L. H. Allen, Phys. Rev. B 48, 15484 (1993).
    38.H. L. Gaigher and N. G. Van der Berg, Thin Solid Films 68, 373 (1980).
    39. C. Traeholt, J. G. Wen, V. Svetchnikov, H. W. Zandbergen, Physica C 230,297 (1994).
    40. David B. Williams and vC. Barry Carter, “Transmission Electron Microscopy” PLENUM (1996).
    41. M. A. Wall and A. F. Jankowski, Thin Solid Films 181, 313 (1989).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE