簡易檢索 / 詳目顯示

研究生: 李振民
Chen-Min Li
論文名稱: 高功率馬達降噪與流場散熱設計之數值與實驗整合研究
Investigation on Improving the Acoustic Characteristics of a High-Power Motor
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
none
李基禎
none
郭鴻森
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 150
中文關鍵詞: 高功率馬達數值方法氣動性能噪音散熱管理技術
外文關鍵詞: High-power motor, Inline fan, Aerodynamic performance, Noise reduction, Thermal management.
相關次數: 點閱:563下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要目標為在不影響高功率馬達風扇之散熱能力下,改良其散熱風扇與馬達外罩以降低整體運轉噪音,本文採用175-HP高功率馬達當作改善標的和基準,建立一套系統化的數值模擬工具針對其完整之流、熱及聲場進行分析,同時確認重要之設計改善參數。首先運用數值方法估算馬達各項損失及電磁場,分析結果得知其總發熱瓦數為5.7KW,此瓦數即為熱場模擬的重要依據;因為馬達過熱將導致效率降低與使用壽命縮短,因此馬達降噪之改善需在不影響馬達散熱情況下進行。本研究利用計算流體力學分析軟體(Fluent),針對原始馬達風扇進行完整熱、流與聲場模擬分析,並與實驗量測之結果相互驗證,以證明建構之數值模型的可信度。原始風扇模擬結果流量為809.1 CFM,選取其中一片散熱鰭片進行監測,高、低溫分別為75.7℃及51℃,接者由模擬觀察發現風扇出口氣流無特定流向地擴散出去,且風扇與風罩間距離過大導致產生渦旋,因此確立主要改良應包括葉輪及風罩,最後將兩者結合做出較適化參數設計。同時依氣流出口方向,此將葉輪改變成斜流扇型式,如此使風扇出口流體較為集中且具有方向性,而斜流扇出口會影響流量及出口氣體流動,因此執行參數化分析以得到較適化方案;並且藉葉輪直徑縮小以降低流量及噪音,將較適化斜流扇葉輪直徑縮小2公分,以達到進一步降噪的目的。至於風罩改善則是依據設計後的葉輪流場,且參考漸擴管路之幾何外形,除讓風扇出口更加平順外,也消除葉輪與風罩間距過大所產生之渦漩,這規劃明顯會使流量增加;最後結合風罩改善與斜流扇縮小葉輪完成整套設計,數值結果顯示其流量比原始設計略為下降5%,但散熱鰭片之溫度約下降2℃。較適化方案模擬結果與原始相比流量略微下降,但散熱效果較佳且噪音值降低(3.3~5 dBA),故將其進行實體化開模製作,並組裝於馬達進行實驗量測,實測之降噪效果可降低4~7 dBA,與模擬結果有些許誤差;探討後發現由於模擬只計算氣動噪音,並未計入振動噪音導致差異產生,唯此誤差值仍在可接受範圍。至於馬達散熱部分藉由量測鰭片間不同位置之風速,間接來推算其散熱能力,測試數據顯示與模擬結果之趨勢相同,這更加驗證數值分析之準確性。綜合歸納上述結果,本文所設計之較適化的高功率馬達風扇,成功地在不影響其散熱性能下達到降噪目的,而本研究建立分析改善模式可供馬達散熱設計之重要參考。


This research focuses on the noise reduction on a permanent-magnet motor under the same cooling performance. A systematic design scheme of the thermal module is established by considering the concerns on aerodynamic, acoustic, and thermal aspects. It is well known that the dissipating energy of motor, including mechanical, copper, and core losses, is critical for the thermal-module design and is difficult to estimate accurately. At first, the electromagnetic field is calculated numerically for providing information to estimate the core and copper losses in a rational manner. As a result, the summation of core, copper, and friction losses for this 175-Hp motor is 5.7 KW, which is the heat needed to dissipate by the thermal module. Then, an integrated CFD and experimental effort is implemented to the motor system for validating the numerical model used in this study. Moreover, several alternatives of fan design and housing arrangement are proposed and assessed for decreasing the acoustic noise generation while the temperature distribution on motor is kept similarly with a 2℃temperature reduction over the cooling fins. Subsequently, based on the numerical predication, the appropriate design, which consists of a smaller inline fan impeller with a 2-cm diameter reduction and a streamlined housing geometry, successfully reduce the noise generations by 3-5 dBA over various locations under the 3,000 rpm operating speed. Furthermore, the set of motor mockup is manufactured and assembled for testing its cooling and acoustic performances for confirming the actual noise-reduction effect. The measurement indicates that a similar noise reduction (4-7 dBA) is attained while an acceptable deviation range (5-7 dBA) between CFD and test results is observed. In summary, the temperatures for permanent magnet and winding core of motor should be maintained well below their safe operating limits. Consequently, the design and analysis tool established here offers a rigorous and systematic scheme for the thermal management on the high-power motor.

致 謝 I 摘要 II Abstract IV 目錄 VI 圖索引 X 表索引 XIV 第一章 緒論 1 1.1 前言 1 1.2 高功率馬達風扇介紹 1 1.3 文獻回顧 2 1.3.1 高功率馬達 4 1.3.2 風機噪音理論 5 1.3.3 數值模擬 6 1.4 研究動機與目的 8 1.5 研究流程 10 第二章 高功率馬達及其噪音介紹 15 2.1高功率馬達介紹 15 2.1.1風扇設計 15 2.1.2風罩設計 18 2.2噪音介紹 20 第三章 數值方法 25 3.1統御方程式 25 3.2紊流模式理論 28 3.2.1大尺度渦漩模擬法 30 3.2.2聲學模式 33 3.3數值計算方法 36 3.3.1求解流程 37 3.3.2離散化方程式 39 3.3.3上風差分法 41 3.3.4速度與壓力耦合 42 3.4邊界條件與收斂判定法則 45 第四章 高功率馬達風扇之數值模擬 47 4.1原始風機之流場模擬 47 4.1.1原始風機之模型建立 49 4.1.2數值模型之網格建立 52 4.1.3原始風機流場模擬結果 55 4.2馬達風扇葉輪改善 59 4.2.1改變葉輪直徑與高度 61 4.2.2葉輪改為斜流扇型式 65 4.2.3風罩外型設計 74 4.2. 4模擬應用情境之流場分析 84 4.3原始馬達風機之熱場模擬 88 4.3.1原始馬達風扇熱場模擬分析 91 4.3.2最適化改善方案之熱場比較 93 第五章 高功率馬達風扇之聲場模擬 105 5.1聲場數值模擬方法與網格配置 105 5.2各種方案之聲場分析及比較 111 第六章 實驗量測與結果分析 118 6.1風機測試方法及儀器設備介紹 118 6.1.1風扇性能測試方法及儀器 119 6.1.2風扇噪音測試方法及儀器 123 6.2原始馬達風扇之實驗結果 124 6.3改善後最適化馬達風扇之實驗結果 130 第七章 結論與建議 143 7.1結論 143 7.2建議 144 參考文獻 146

[1] CNS 14400,“Low Voltage Three Phase Squirrel Cage High Efficiency Induction Motors,”Chinese National Standard, 2010.
[2] Morrison, A. T., “Optimization of Heat Sink Fin Geometries for Heat Sinks in Natural Convection,” InterSociety Conference on Thermal Phenomena, pp. 145-148, 1992.
[3] Bejan, A., Tsatsaronis, G., and Moran, M., “Thermal Design and Optimization,” Wiley, pp. 241-256, 1996.
[4] Bar-Cohen, A., Iyengar, M., and Kraus, A. D., “Design of Optimum Plate-Fin Natural Convective Heat Sinks,” Journal of Electronic Packaging, Vol. 125, pp. 208-216, June 2003.
[5] Narasimhan, S. and Majdalani, J., “Characterization of Compact Heat Sink Models in Natural Convection,” IEEE Transactions on Components and Packaging Technologies, Vol. 25, pp. 78-86, 2002.
[6] 周封,管春偉,李偉力,趙芬,“鐵耗和環流損耗分布對定子溫度場及絕緣外表面散熱係數計算的影響”,中國電機工程學報,29卷,21期,2009。
[7] Zeller, W. and Stang, H., “Predetermination of the Axial-Flow Fans,” Heizung-Luftung-Haustchnik, Vol. 9, No. 12, 1957, pp. 345-357.
[8] Zeller, W., “Concerning Mathematical Treatment of Noise Behaviour in Fans for Air Conditioning Plants,” VID-Berichte, No. 38, 1959.
[9] Hüebner, G., “Noise Generated by Centrifugal Fans,” Siemens-Zeitschrift, Vol. 8, pp. 145-155, 1959.
[10] Schlichting, H., “Application of the Boundary Layer Theory to Flow Problems of Turbo Machines,” Siemens-Zeitschrift, Vol. 33, No. 7, pp. 74-82, 1959.
[11] Gruber, M., Joseph, P. F., and Azarpeyvand, M., “An Experimental Investigation of Novel Trailing Edge Geometries on Airfoil Trailing Edge Noise Reduction,” 19th AIAA/CEAS Aeroacoustics Conference, pp. 10, 2013
[12] Grasso, G., Christophe, J., Schram, C., and Verstraete, T.,“Aerodynamic, Aeroacoustic and Structural Optimization of a Contra-Rotating Fan,” 15th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC 2014.
[13] Lighthill, M. J., “On Sound Generation Aerodynamically - I. General Theory,” Proc. Roy. Soc. London, Vol. 211, pp. 564-587, 1952.
[14] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows,” International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
[15] Su, M. M., Gu, C. A., and Miao, Y. M., “Numerical Study of Viscous Flow Field in Mixed-Flow Fan,” Journal of Xi’an Jiaotong University, Vol. 30, No. 10, pp. 55-63, 1996.
[16] Amone, A., “Viscous Analysis of Three-Dimensional Rotor Flows Using a Multigrid Method,” NASA TM-106266, 1993.
[17] 黃家烈,“筆記型電腦散熱風扇之研究”, 國立台灣科技大學機械工程技術研究所博士論文,2001年。
[18] Lu, H. Z., Huang, L., So, R. M. C., and Wang, J., “A Computational Study of the Interaction Noise from a Small Axial-Flow Fan,” the Journal of the Acoustical Society of America, Vol. 122 , No. 3, pp. 1404-1415, 2007.
[19] 蔡明倫,“風扇性能評估與設計方法之整合研究”,國立台灣科技大學博士論文, 2010年。
[20] 工研院IEK節能技術研究部能源研究組。
http://ieknet.iek.org.tw/.
[21] CNS 8753, “Determination of Sound Power Level of Noises for Fan, Blower, and Compressors,” Chinese National Standard, 1999.
[22] 吳御銓,“1/4λ減噪器應用在離心扇之數值與實務整合研究”,國立台灣科技大學碩士論文,2014年。
[23] 陳彥彰,“亥姆霍茲共振器應用於管路風機之實驗與模擬整合研究”, 國立台灣科技大學碩士論文,2014年。
[24] Kondo, L. and Aoki, Y., “Noise Reduction in Turbo Fans for Air Conditioners,” Technical Review – Mitsubishi Heavy Industries, Vok.26, No. 3, pp.173-179 ,October 1989.
[25] Ansys Fluent User’s Guide, ANSYS Inc.2013
[26] Smirnov, R., Shi, S., and Celik, I., “Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling”, Journal of Fluids Engineering, Vol. 123, pp. 359-371, 2001.
[27] Uranga, A., Persson, P., Drela, M., and Peraire, J., “Implicit Large Eddy Simulation of Transitional Flows over Airfoils and Wings”, 19th AIAA Computational Fluid Dynamics, San Antonio, Texas, 2009.
[28] Ffowcs Williams, J. E. and Hawkings, D. L., “Sound Generation by Turbulence and Surface in Arbitrary Motion”, Philosophical Transactions of the Royal Society of London, Vol. 264, pp. 321-342, 1969.
[29] Curle, n., “The Influence of Solid Boundaries upon Aerodynamic Sound”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences231, pp. 505–514. 1955.
[30] ISO 3744:2010, “Determination of sound power levels and sound energy levels of noise sources using sound pressure,” International Organization for Standardization, 2010.

QR CODE