簡易檢索 / 詳目顯示

研究生: 張力壬
Li-Jen Chang
論文名稱: 奈米光觸媒應用於水質淨化之研究
Application of Nano Photocatalyst on Water Purification
指導教授: 楊錦懷
Chin-Huai Young
口試委員: 黃兆龍
Chao-Lung Hwang
賴宏仁
Hong-Jen Lai
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 75
中文關鍵詞: 二氧化鈦比表面積初始溶液濃度紫外線強度
外文關鍵詞: water purification
相關次數: 點閱:416下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究將奈米光觸媒二氧化鈦披覆在淨水器及玻璃珠上形成一層厚度很薄的薄膜,並且將玻璃珠放置在淨水器裡,再以亞甲基藍來模擬水中的有機物,然後利用淨水器及玻璃珠上的光觸媒進行光催化反應降解亞甲基藍,進一步了解光觸媒分解有機污染物的效果。本研究主要採用三種控制變數,分別為高低紫外線強度、初始有機物溶液濃度、玻璃珠比表面積,使用高低紫外線強度來模擬在不同天候狀況下淨水器吸收太陽光紫外線的狀況,所以其主要分成高和低兩種紫外線強度來比較有機物消退情形;初始有機物溶液濃度則是1ppm、3ppm、5ppm分別代表低中高濃度,藉以模擬不同水質污染的程度;至於比表面積主要是了解當增加光觸媒和待處理水溶液的接觸面積時對光催化反應的影響,進一步了解如果欲實用化淨水器時設計的重點項目。
研究結果顯示,當太陽光的紫外線強度增加時,光觸媒的效率有明顯的提升,但是當紫外線強度差異不大時效果不顯著。在比表面積方面,經實驗結果可知使用小粒徑玻璃珠對光催化反應得到較佳的結果,所以在工程應用上設計淨水器時宜採用比表面積較小玻璃珠或其他載體。在初始溶液濃度方面,初始濃度的增加有利於降解速率,濃度越高在固定時間下,降解速度較佳。


Nano photocatalyst is applied on the proposed water purification device in this research. The device is located on the roof of the building by using the nature power of sun to perform the reaction of nano photocatalyst.
A series of testing is designed in this research to investigate the proposed device which included the parameter of climate, contact area of nano photocatalyst, density of pollutant. The result showed the higher the intensity of sun power, the higher of the capability of purification. Higher contact area induced higher capability of purification from nano photocatalyst. The higher density of pollutant induced the higher purification.
The device is going to apply a pattern for commercial purpose.

誌謝 Ι 中文摘要 Ⅱ 英文摘要 Ⅲ 目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅶ 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究流程 4 第二章 文獻回顧 5 2.1奈米光觸媒TiO2介紹 5 2.2光觸媒光催化原理 10 2.3光催化之影響因子 17 2.3.1 紫外光強度 17 2.3.2 有機物起始濃度 18 2.3.3 溶液PH值 19 2.3.4 溶液溫度 21 2.4光觸媒水處理用光反應器類型 21 2.4.1人造光源反應器種類介紹 21 2.4.2太陽光反應器種類介紹 23 第三章 試驗計劃 29 3.1 試驗流程 29 3.2 試驗設備及儀器 31 3.3 試驗變數 36 3.3.1 太陽光強度 36 3.3.2有機溶液初始濃度 37 3.3.3 玻璃珠的比表面積 38 3.4 試驗方法 40 第四章 實驗結果與分析 43 4.1 太陽光對直接分解亞甲基藍濃度的影響 43 4.2紫外線強度對光催化降解亞甲基藍濃度的影響 48 4.3 比表面積對光催化降解亞甲基藍濃度的影響 55 4.4 溶液濃度對光催化降解亞甲基藍濃度的影響 63 第五章 結論與建議 67 5.1 結論 67 5.2 建議 68 參考文獻 69

參考文獻
1. 呂宗昕,圖解奈米科技與光觸媒,商周出版,2003
2. 郭百蟬,可見光奈米光觸媒應用於甲醛消退之研究,碩士論文,國立台灣科技大學營建系
3. 莊英良,以紫外線/二氧化鈦程序分別處理含六價鉻及亞素靈水溶液反應行為之研究,碩士論文,國立台灣科技大學營建系
4. 環境化学などを多数の画像で視覚的に学んでもらうページです,http://www.ecosci.jp/study.html
5. 何淑珠,以紫外線/氧化劑程序處理氯酚類有機廢水之研究,碩士論文,國立台灣科技大學營建系
6. 吳致誠,UV/TiO2程序中氫氧自由基之生成研究,碩士論文,國立中興大學,28-31頁
7. Barbeni, M., E. Pramauro, and E. Pelizzetti, “Photodegradation of Pentachlorophenol Catalyzed by Semiconductor Particles”,Chemosphere, Vol.14, No.2, pp. 195,(1985)。
8. Korman, C., D. W. Bahnemann, and M. R. Hoffmann, “Photocatalytic Production of H2O2 and Organic Peroxides in Aqueous Suspensions
of TiO2, ZnO and Desert Sand”, Environ. Sci. & Technol., 24, pp.798,(1988)。
9. Sclafain, A., L. Palmisano, and M. Schiavello, “Influence of the Preparation Methods of TiO 2 on the Photocatalytic Degradation of Phenol in Aqueous Dispersion,” J. Phys, Chem., pp. 829-832,( 1990)。
10. Annapragada, R., R. Leet, R. Changrani, and G. B. Raupp, “Vacuum Photocatalytic Oxidation of Trichloroethylene”, Environ. Sci. & Technol., Vol.31, pp. 1898,(1997)。
11. Hung, C. H. and B. J. Marinas, “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films,” Environ. Sci. & Technol., Vol. 31, pp. 562,(1997)。
12. Peral, J. and D. F. Ollis, “Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification: Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation”, J. Catal.,Vol.136, pp.554,(1992)。
13. Sampath, S., H. Uchida, and H. Yoneyama, “Photocatalytic Degradation of Gaseous Pyridine over Zeolite-Supported Titanium Dioxide”, J.Catal., 149, pp.189,(1994)。
14. Dibble, L. A., “Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene by Near Ultraviolet Illuminated TiO2”,Ph. D. Dissertation, Arizona State Univ.,(1989)。
15. Dibble, D. A. and G. B. Raupp, “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Airstreams”, Environ. Sci. & Technol., 26, pp.492,(1992)。
16. 高濂、鄭珊、張青紅,奈米光觸媒,五南圖書,2004,2頁 19頁 60-61頁 363-375頁
17. D. S. Ollis , H. Al-Ekabi , Ed , Photocatalytic Purification and Treatment of Water and Air, Trace Metals in the Environment, Wol. 3, Elsevier, Amsterdam, 1993
18. Final Configuration of PSA solar detoxification loop, Plataforma Solar de Al-meria, TRO6/91, 1991
19. Vainshtein B K, Fridkin W M, Indenbom V L. Structure of Crystals. Berlin:Macmillan India Ltd, 1994
20. Buchanan Relva C and Park, Taeun. Materials Crystal Chemistry, New York:Marcel Dekker, Inc., 1997
21. A. Fujishima and K. Hashimoto, T. Watanabe, “TiO2 Photocatalysis Fundamentals and Application” BKC, Inc., 125,128 (1999)
22. 廖倖娟,以UV/TiO2光催化反應處理液相酚,碩士論文,國立台灣大學環境衛生研究所
23. Oliver B.G.,Cosgrove E.G.,Carey J. H. Effect of Suspended Sediments on the Photolysis of Organics in Water. Environ. Sci. Technol., 13, p1075-1077, 1979.
24. 胡振國譯,半導體元件-物理與技術,全華圖書公司 (1989)。
25. 黃碧瑩,TiO2與Pt/TiO2系統對單氯酚光分解之研究,碩士論文,國立中興大學環境工程系
26. Rominder, P. S., J. Lin, D. W. Hand, J. C. Crittenden, D. L. Perram, and M. E. Mulins, “Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water”, Waer Environ. Res., Vol. 65, No.5, pp. 655,(1993)。
27. Herrmann, J. M.; Disdier, J.; Pichat, P. Chem. Phys. Lett. 1984, 108, 618.
28. Okamoto, K., Y. Yasunori, T. Hirok, T. Masashi, and T. Akira“Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder,” Bull. Chem. Soc., Jpn, Vol. 58, pp. 2015-2022, (1985)。
29. Fox, M. A. and M. T. Dulay, “ Heterogeneous Photocatalysis,”Chem. Rev., 93, pp. 341-350,( 1993)。
30. Kamat, P. V., “ Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces,” Chem. Rev., 93, pp. 267-269 ,(1993)。
31. Stumm , W . Chemistry of the solid-Water interface . John Wiley & Sons , New York , 1992, p347 .
32. Ollis D F, Pelizzetti E, Serpone N. Environ. Sci. Technol. 1991, 25 p1523~1528
33. Bahanemann D, Bockelmann D, Goslich R. Solar Enter. Mater. 1991, 24 p564~583
34. Matthews R W. JPPAC. 1992, 66 p355~366
35. Richard C, Martre A M, Boule P. J. Photochem. Photobiol. A:Chem. 1992, 66 p225~234
36. Cunningham J, Srijaranai S. J. photochem. Photobiol. A:Chem. 1991, 58, p361~371
37. Lin W. Y.;Wei, C.;Rajeshwar, K. Photocatalytic Reduction and Immobilization of Hexavalent Chromium at Titanium Dioxide in Aqueous Basic Media. J. Electrochem. Soc. 1993, 140, p2477-2482.
38. Herrmann, J. M.;Disdier, J.;Pichat, P. Photocatalytic Deposition of Silver on Powder Titania:Consequences for the Recovery of Silver. J. Cat. 1988, 113, p72-81.
39. Al-Sayyed, G.;D’Oliveira, J.-C.;Pichat, P. Semiconductor-Sensitized Photodegradation of 4-Chlorophenol in Water. J. PhotoChem. Photobiol. A:Chem. 1991, 58, p99-114.
40. Munoz, J. ;Domenech, X. TiO2 Catalysed Reduction of(Ⅵ) in Aqueous Solutions under Ultraviolet Illumination. J. of App. Eletcrochem. 1990, 20, p518-521.
41. Davis, A. P.;Huang, C. P. Removal of Phenols from Water by a Photocatalytic Oxidation Process. Wat. Sci Tech. 1989, 21, p455-464.
42. 董振海 胥维昌,光催化降解染料廢水的研究現狀及展望,2002年l0月,染料與染色DYESTUFFS AND COLORATION 第40卷第3期 p176。

QR CODE