簡易檢索 / 詳目顯示

研究生: 蔡中旗
Zhong-Qi Cai
論文名稱: 活動情境的開窗及燈光最佳化控制系統
The Active Scenario Fenestration and Light Control Optimization Framework
指導教授: 賴祐吉
Yu-Chi Lai
口試委員: 戴文凱
Wen-Kai Tai
周子銓
Tzu-Chuan Chou
林士勛
Shih-Syun Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 34
中文關鍵詞: 室內光照全局照明燈光設計
外文關鍵詞: Interior lighting, Global illumination, Lighting design
相關次數: 點閱:205下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

不同的室內活動會有對應的活動情境設計,包括布景擺飾、背景音樂和燈光照明等等,好的活動情境設計會讓人更加投入在活動中。
本研究主要探討活動情境中燈光照明的部分,並將室內光照分成眩光、照度和色調來討論。
在設計照明時自然光的引入可以讓人充滿活力與朝氣,另外生活中還有許多常見的燈光照明控制,例如,辦公室常用明亮的白強光使人精神振奮,咖啡廳或飯店等場景則使用偏暗柔和的光使人放鬆心情。
但是,自然光中太陽反射造成的眩光卻會造成不適甚至傷害人眼。
本研究利用光線模擬系統,控制室內的光源和百葉窗達到最符合室內活動情境的照明。
傳統的感測器迴路控制,需要透過經驗才能安裝在適合的位置,且大多僅能測試單點的光照度,因此需要較多的感測器才能完成,也不符合室內光照均齊的概念。
而對整個場景生成渲染的模擬方法,單一控制結果需要數小時的計算時間,不適合實務上使用;且考慮的多為整體的光照數值,容易造成區域間的亮度有很大的差異,也無法做到不同區域的個別光照控制。
本研究輸入三維場景模型、百葉窗位置及室內光源位置,標註活動區域、室內觀測位置和觀測方向,透過預計算靜態的室內燈光和自然光等資訊,加快渲染模擬的流程。
之後從場景中觀察者視角渲染影像,本研究根據光照在室內場景的分布、色調和眩光來設計目標函數。
預先對場景區域做分類,根據活動情境設計各區域的照度和色調,來計算光照在室內場景分布的成本及色調的成本;並利用全視域成像以進行眩光分析。
之後使用最佳化計算,達成活動情境的開窗及燈光最佳化控制系統。
最後本研究進行可靠性研究來驗證系統,確認目標函數的設計是合理有效的,讓系統能根據不同的活動情境計算出適合的百葉窗及室內光源控制參數。


Different indoor activities will need corresponding active scenario design, including decorations, background music, lighting, etc.
A good active scenario design will make people more involved in it.
In this work, we mainly discuss the lighting part in the active scenario, and divide it into glare, illuminance and color.
When design active scenario lighting, introduce natural light can make people full of energy.
In addition, there are many lighting design in life.
For example, bright white light is often used in the office to inspire people.
%Scenes such as cafes or hotels use warm and soft light to make people relax.
But, the glare caused by the reflection of the sun can cause discomfort and even hurt eyes.
Our work uses a light simulation system to control indoor light sources and blinds to achieve the most suitable illuminance for indoor active scenario.
Traditional lighting sensor requires experience to be installed in a suitable position.
And most of them can only sense the illuminance of a single point, which does not conform to the concept of uniform indoor lighting.
It cannot achieve that by adding more sensors.
On the other hand, the physical-based rendering method takes several hours to render a single control result, which is not properly for practical use.
And most of them only consider the average global illuminance, and cannot achieve different regions lighting control.
Our system inputs the 3D scene model, the position of the blinds and the position of the indoor light source.
Then mark the focus region, set indoor observation location ,and set observation direction.
We precompute static indoor lighting and daylight to speed up the process of rendering simulation.
Finally, we render the image from the observer's view to analyze the scene illuminance.
Our system designs the objective function according to the light distribution, glare and color.
We design each region's target value of the illuminance and color according to the active scenario.
Then, calculate the cost of light distribution, glare and color based on the rendered image.
Afterwards, we use optimization algorithm to achieve the most properly illuminance for indoor active scenario.
Furthermore, we conduct a reliability study to show that our objective function is reasonable and effective.

中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 符號標記使用說明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.1 問題定義 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1.2 主要貢獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1.3 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 2 相關研究. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 基於物理之全局照明(Physically-based Global Illumination) . . . . . . 4 2.1.1 基於物理照明(Physically-based Lighting) . . . . . . . . . . . 4 2.1.2 環境光照明(Environment Lighting) . . . . . . . . . . . . . . .5 2.2 建築物的控制估算 . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 控制感測器 . . . . . . . . . . . . . . . . . . . . . . . . . .6 2.2.2 燈光設計(Lighting Design) . . . . . . . . . . . . . . . . . . 7 2.3 眩光預估指數(Glare Prediction Index) . . . . . . . . . . . . . . . . 7 2.4 顏色轉移(Color Transfer) . . . . . . . . . . . . . . . . . . . . . .8 3 方法總覽 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 4 光源貢獻計算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5 最佳化控制參數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1 目標函數(Objective Function)的設計 . . . . . . . . . . . . . . . . . 13 5.1.1 場景光照分布成本函數 . . . . . . . . . . . . . . . . . . . . . .15 5.1.2 眩光評估指標成本函數 . . . . . . . . . . . . . . . . . . . . . .15 5.1.3 場景色調成本函數 . . . . . . . . . . . . . . . . . . . . . . . .16 5.2 符合時序連貫性的非線性最佳化 . . . . . . . . . . . . . . . . . . . . . 19 6 實驗結果與討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 6.1 活動情境探討 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.1.1 可靠性研究(Reliability Study) . . . . . . . . . . . . . . . . .22 6.1.2 專注力控制結果 . . . . . . . . . . . . . . . . . . . . . . . . 22 6.1.3 目標氛圍控制結果 . . . . . . . . . . . . . . . . . . . . . . . 23 6.2 最佳化時間優化 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7 結論與未來工作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

[1] Y.-S. Luo, “Intuitive and easily-installed fenestration and light control framework,” Master’s thesis, Taiwan Tech, Taiwan, 2018.
[2] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,” SIGGRAPH Computer Graphics, vol. 18, pp. 137–145, 1984.
[3] G. J. Ward and R. D. Clear, “A ray tracing solution for diffuse interreflection,” SIGGRAPH Computer Graphics, vol. 22, pp. 85–92, 2008.
[4] J. T. Kajiya, “The rendering equation,” SIGGRAPH Computer Graphics, vol. 20, pp. 143–150, 1986.
[5] S. Laine, H. Saransaari, J. Kontkanen, J. Lehtinen, and T. Aila, “Incremental instant radiosity for real-time indirect illumination,” in Proceedings of the 18th Eurographics conference on Rendering Techniques, pp. 277–286, 2007.
[6] E. Veach and L. Guibas, “Bidirectional estimators for light transport,” in Photorealistic Rendering Techniques, Springer, 1995.
[7] E. Veach and L. J. Guibas, “Metropolis light transport,” in Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp. 65–76, 1997.
[8] M. F. Cohen and D. P. Greenberg, “The hemi-cube: A radiosity solution for complex environments,” SIGGRAPH Computer Graphics, vol. 19, pp. 31–40, 1985.
[9] D. S. Immel, M. F. Cohen, and D. P. Greenberg, “A radiosity method for nondiffuse environments,” SIGGRAPH Computer Graphics, vol. 20, pp. 133–142, 1986.
[10] H. W. Jensen, “Global illumination using photon maps,” in Proceedings of the Eurographics Workshop on Rendering Techniques, pp. 21–30, Springer-Verlag, 1996.
[11] T. Hachisuka and H. W. Jensen, “Progressive photon mapping,” ACM Transactions on Graphics (TOG), vol. 27, pp. 130:1–130:8, 2008.
[12] T. Hachisuka and H. W. Jensen, “Stochastic progressive photon mapping,” ACM Transactions on Graphics (TOG), vol. 28, no. 5, p. 141, 2009.
[13] A. S. Kaplanyan and C. Dachsbacher, “Adaptive progressive photon mapping,” ACM Transactions on Graphics (TOG), vol. 32, no. 2, pp. 1–13, 2013.
[14] R. Ng, R. Ramamoorthi, and P. Hanrahan, “All-frequency shadows using nonlinear wavelet lighting approximation,” ACM Transactions on Graphics (TOG), vol. 22, pp. 376–381, 2003.
[15] R. Ng, R. Ramamoorthi, and P. Hanrahan, “Triple product wavelet integrals for all-frequency relighting,” ACM Transactions on Graphics (TOG), vol. 23, pp. 477–487, 2004.
[16] P.-P. Sloan, J. Kautz, and J. Snyder, “Precomputed radiance transfer for realtime rendering in dynamic, low-frequency lighting environments,” ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp. 527–536, 2002.
[17] E. P. Lafortune and Y. D. Willems, “Bi-directional path tracing,” in Proceedings of Third International Conference on Computational Graphics And Visualization Techniques, pp. 145–153, 1993.
[18] Y.-S. Chiou and P.-C. Huang, “An hdri-based data acquisition system for the exterior luminous environment in the daylight simulation model,” Solar Energy, vol. 111, pp. 104–117, 2015.
[19] J. L¨ow, A. Ynnerman, P. Larsson, and J. Unger, “Hdr light probe sequence resampling for realtime incident light field rendering,” in Proceedings of the 2009 Spring Conference on Computer Graphics, pp. 43–50, 2009.
[20] A. Silvennoinen and J. Lehtinen, “Real-time global illumination by precomputed local reconstruction from sparse radiance probes,” ACM Transactions on Graphics (TOG), vol. 36, no. 6, p. 230, 2017.
[21] M. McGuire, M. Mara, D. Nowrouzezahrai, and D. Luebke, “Real-time global illumination using precomputed light field probes,” in Proceedings of the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, p. 2, 2017.
[22] H. B¨ulow-H¨ube, “Solar shading and daylight redirection,” Energy and Building Design, 2007.
[23] E. Lee, B. Coffey, L. Fernandes, S. Hoffman, A. McNeil, A. Thanachareonkit, and G. Ward, “High performance building fa¸cade solutions-phase ii,” tech. rep., Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2014.
[24] M. Konstantoglou and A. Tsangrassoulis, “Dynamic building envelope system: a control strategy for enhancing daylighting quality and reducing energy consumption,” in Energy Forum, pp. 6–7, 2012.
[25] K. Wymelenberg, “Patterns of occupant interaction with window blinds: A literature review,” Energy and Buildings, vol. 51, pp. 165–176, 2012.
[26] C. Reinhart and K. Voss, “Monitoring manual control of electric lighting and blinds,” tech. rep., Light Res. Technol., 2003.
[27] D.-W. Kim and C.-S. Park, “Comparative control strategies of exterior and interior blind systems,” Lighting Research & Technology, vol. 44, no. 3, pp. 291–308, 2012.
[28] S. Olbina and J. Hu, “Daylighting and thermal performance of automated splitcontrolled blinds,” Building and Environment, vol. 56, pp. 127–138, 2012.
[29] M. Konstantoglou, A. Kontadakis, and A. Tsangrassoulis, “Counterbalancing daylighting, glare and view out: the role of an external shading system control strategy,” Clima, pp. 16–19, 2013.
[30] C. Schoeneman, J. Dorsey, B. Smits, J. Arvo, and D. Greenberg, “Painting with light,” in Proceedings of the 20th annual conference on Computer graphics and interactive techniques, 1993.
[31] W.-C. Lin, T.-S. Huang, T.-C. Ho, Y.-T. Chen, and J.-H. Chuang, “Interactive lighting design with hierarchical light representation,” in Computer Graphics Forum, 2013.
[32] H. Einhorn, “A new method for the assessment of discomfort glare,” Lighting Research & Technology, vol. 1, no. 4, pp. 235–247, 1969.
[33] R. G. Hopkinson, “Glare from daylighting in buildings,” Applied Ergonomics, vol. 3, no. 4, pp. 206–215, 1972.
[34] J. Wienold and J. Christoffersen, “Evaluation methods and development of a new glare prediction model for daylight environments with the use of ccd cameras,” Energy and Buildings, vol. 38, no. 7, pp. 743–757, 2006.
[35] M. Konstantoglou and A. Tsangrassoulis, “Dynamic operation of daylighting and shading systems: A literature review,” Renewable and Sustainable Energy Reviews, vol. 60, pp. 268–283, 2016.
[36] N. J. STONE, “Designing effective study environments,” Journal of Environmental Psychology, vol. 21, no. 2, pp. 179–190, 2001.
[37] I. Knez, “Effects of indoor lighting on mood and cognition,” Journal of Environmental Psychology - J ENVIRON PSYCHOL, vol. 15, pp. 39–51, 03 1995.
[38] M. Canazei and E. Weiss, The influence of light on mood and emotion, vol. 1, pp. 297–306. 10 2013.
[39] A. Kuijsters, J. Redi, B. Ruyter, and I. Heynderickx, “Lighting to make you feel better: Improving the mood of elderly people with affective ambiences,” PLoS ONE, vol. 10, 07 2015.
[40] I. Knez and I. Enmarker, “Effects of office lighting on mood and cognitive performance and a gender effect in work-xrelated judgment,” Environment and Behavior - ENVIRON BEHAV, vol. 30, pp. 553–567, 07 1998.
[41] Y.-S. Chiou and P.-C. Huang, “The ever changing sky-bim model in daylighting study,” in 2014 ASHRAE/IBPSA-USA Building Simulation Conference, 2014.
[42] K. Rangi and W. Osterhaus, “Windowless environments: are they affecting our health,” Proceedings of LIGHTING, pp. 18–19, 1999.
[43] “國家照度標準室內工作場所照明.” http://alit.org.tw/, 2011. [Online; accessed 28-April-2018].
[44] Q. Wang, H. Xu, F. Zhang, and Z. Wang, “Influence of color temperature on comfort and preference for led indoor lighting,” Optik, vol. 129, pp. 21–29, 2017.
[45] C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Research & Application, vol. 17, no. 2, pp. 142–144, 1992.
[46] “What color is a blackbody?.” http://www.vendian.org/mncharity/dir3/blackbody/, 2001.
[47] “Color temperature.” https://en.wikipedia.org/wiki/Color_temperature#Correlated_color_temperature.
[48] “Color temperature.” http://www.techmind.org/colour/coltemp.html.
[49] S. Le Digabel, “Nomad: Nonlinear optimization with the mads algorithm,” ACM Transactions on Mathematical Software, vol. 37, p. 44, 2011.
[50] C. Audet and J. E. Dennis Jr, “Mesh adaptive direct search algorithms for constrained optimization,” SIAM Journal on optimization, vol. 17, no. 1, pp. 188–217, 2006.
[51] W. J. Matt Pharr and G. Humphreys, “Physically based rendering:from theory to implementation 3rd edition.” https://www.pbrt.org/, 2016.
[52] Blender Foundation, “Blender (software).” https://www.blender.org/, 1998. [Online; accessed 1-May-2018].

無法下載圖示 全文公開日期 2025/11/04 (校內網路)
全文公開日期 2025/11/04 (校外網路)
全文公開日期 2025/11/04 (國家圖書館:臺灣博碩士論文系統)
QR CODE