簡易檢索 / 詳目顯示

研究生: 賴世風
Sifundvolesihle Dlamini
論文名稱: 使用YOLOv4 模型對於紡織工業品質檢測和非微小細胞肺癌醫學影像中即時目標檢測之創新智慧系統
Developing innovative intelligent systems for real-time object detection in textile industry quality inspection and non-small cell lung cancer medical imaging using YOLOv4
指導教授: 郭中豐
CHUNG-FENG JEFFREY, KUO
口試委員: 黃昌群
CHANG-QUN, HUANG
朱大維
DA-WEI, ZHU
邱錦勳
JIN-XUN, QIU
張嘉德
JIA-DE, ZHANG
蘇德利
DE-LI, SU
湯燦泰
CAN-TAI, TANG
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 61
中文關鍵詞: 智能係統紡織品行業質檢非小細胞肺癌醫學影像檢測YOLOv4
外文關鍵詞: Intelligent systems, textile, industry quality inspection, non-small cell lung cancer, medical imaging, detection, YOLOv4
相關次數: 點閱:169下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們使用 YOLOv4 作為主要模型開發用於紡織工業品質控制和非微小細胞肺癌檢測中即時目標檢之創新智慧系統。
    紡織工業品質檢測系統以相對較快的檢測速度並以高精度檢測功能性紡織布料中的缺陷。該系統由品質檢測硬件和圖像處理軟件組成。我們開發的軟件使用數據預處理技術將原始圖像分解成合適的小尺寸。
    利用影像濾波來去除雜訊和增強隱藏的特徵。為了創建系統穩健性使用數據擴充技術,然後分別標記圖像中缺陷的座標和分類。最後,我們利用 YOLOv4使用預訓練模型的權重進行訓練。
    我們設計的軟件與設備硬件同時進行系統檢測。所設計的系統在缺陷檢測方面表現出色,準確率為 95.3%,召回率和 F1 得分分別為 93.6% 和 94.4%。在缺陷檢測方面表現出高性能,該系統實現了每秒 34 幀,推理時間為 21.4 毫秒。該系統能夠以高置信度即時檢測自功能性紡織面料缺陷。
    在醫學成像方面,我們的目標是開發一個全自動系統,該系統將使用 YOLOv4 和基於區域的目標輪廓模型檢測、分割和準確地將非微小細胞肺癌腫瘤重建到空間中。該系統由兩個主要部分組成,即檢測和體積可視化。檢測部分由圖像增強、數據增強、標記和定位組成,而體積渲染主要是圖像濾波、腫瘤提取、基於區域的目標輪廓和三維重建。在該系統中,圖像被增強之前消除噪聲,數據擴充和多樣化圖像數據。然後進行標記,以便為分類模型建造強大的學習基礎。具有局部腫瘤的圖像通過平滑濾波器,然後收集並提取腫瘤遮罩。最後獲得輪廓信息以可視化重建腫瘤。所設計的系統顯示出強大的檢測性能,所設計的系統檢測速度為每秒 34 幀,每幅圖像的推理時間為 21.4 毫秒,精度為 96.6%,靈敏度和 F1 分數分別為 97% 和 96.8%。系統分割驗證在腫瘤提取方面實現了 92.2% 的 dice 得分係數。在使用三維重建腫瘤的 3D 打印圖像驗證該方法的體積可視化,獲得了 99.7% 的準確率。該系統顯示出強大的性能和可靠性,因為它能夠以高置信度檢測、分割和三維重建腫瘤。


    We develop innovative intelligent systems for real-time object detection in textile industry quality inspection and non-small cell lung cancer tumor detection using YOLOv4 as a backbone model.
    The textile industry quality inspection system aims at detecting defects in functional textile fabrics with high precision at a relatively fast detection speed. An image processing and a quality inspection hardware makes up the system. Through the development of the software, data preprocessing techniques were used to break down raw images into smaller suitable sizes. Image denoising and enhancing some hidden features were achieved through filtering. Data augmentation techniques were utilized to generalize and multiply the data to create robustness, followed by labeling where the defects were marked and tagged with their respective labels. Lastly, we employed YOLOv4, trained it with pretrained weights for localization. To implement the detection system, we deployed the software in the quality inspection hardware we designed. With a precision of 95.3%, recall and F1 score of 93.6% and 94.4% respectively, the designed system demonstrates a high performance in defect detection. The system achieved a relatively fast detection speed of 34 frames per second with an inference time of 21.4ms per image. As a result of this system, functional textile fabric defects can be detected in real-time with high confidence.
    On the medical imaging we aim to develop a fully automatic system that will detect, segment and accurately reconstruct non-small cell lung cancer tumors into space using YOLOv4 and a region-based active contour model. The system consists of two main sections which are the detection and volumetric rendering. The detection section is composed of image enhancement, data augmentation, labeling and localization while the volumetric reconstruction is mainly image filtering, tumor extraction, contour extraction using region-based active contour and 3D rendering. In this system, the images are enhanced to eliminate noise before augmentation which is intended to multiply and diversify the image data. Labeling is then carried out in order to create a solid learning foundation for the localization model. Images with localized tumors were passed through smoothing filters and then clustered to extract tumor masks. Lastly contour information was obtained to render the volumetric tumor. The designed system displays a strong detection performance with a precision of 96.6%, sensitivity and F1 score of 97% and 96.8% respectively at a detection speed of 34 frames per second, inference time per image of 21.4ms. The system segmentation validation achieved a dice score coefficient of 92.2% on tumor extraction. A 99.7% accuracy was obtained during the verification of the method’s volumetric rendering using 3D printed images of the rendered tumors. This system shows a strong performance and reliability due to its ability to detect, segment and reconstruct a volumetric tumor into space with high confidence.

    摘要 ……………………………………………………………………………………. i Abstract ……………………………………………………………………………….. iii Acknowledgments …………………………………………………………………….. v Table of contents ……………………………………………………………………… vi List of figures …………………………………………………………………………. ix List of tables …………………………………………………………………………… xi Chapter 1. Introduction ……………………………………………………………… 1 1.1. Research motivation …………………………………………………………… 1 1.2. Literature review ……………………………………………………………… 2 1.3. Research objective …………………………………………………………….. 3 1.4. Main contributions ………………………………………….…………………. 4 1.5. Dissertation outline ……………………………………………………………. 4 Chapter 2. Methodology ……………………………………………………………… 5 2.1. Data preprocessing ……………………………………………………….……. 5 2.1.1. Image preparation ………………………………………………………... 5 2.1.2. Image filtering …………………………………………………………… 6 2.1.2.1. Mean Filter …………………………………………………………. 6 2.1.2.2. Gaussian Filter ……………………………………………………… 7 2.1.2.3. Median Filter ……………………………………………………….. 8 2.2. Data augmentation …………………………………………………………….. 8 2.3. Labeling ……………………………………………………………………….. 8 2.4. Localization ……………………………………………………………………. 9 2.5. Lung tumor 3D reconstruction ………………………………………………… 11 2.5.1. k-means clustering ……………………………………………………….. 11 2.5.2. Region-based active contour …………………………………………….. 11 2.5.3. Marching cubes ………………………………………………………….. 15 2.6. Evaluation metrics …………………………………………………………….. 16 Chapter 3. Intelligent systems application …………………………………………. 18 3.1. Textile defect detection ……………………………….……………………….. 18 3.1.1. Related literature ………………………………………….……………… 18 3.1.2. Experiment & results ……………………………………….…….………. 19 3.1.2.1. Data acquisition and preparation ……………………………….…… 19 3.1.2.2. Image enhancement ………………………………….……………… 23 3.1.2.3. Data augmentation ………………………………………………….. 24 3.1.2.4. Labeling ………………………………………….………………….. 25 3.1.2.5. Localization …………………………………………….…………… 26 3.1.3. Hardware design …………………………………………….……………. 28 3.2. Lung tumor detection, segmentation and 3D reconstruction …………………… 31 3.2.1. Related literature ……………………………………………….………… 31 3.2.2. Experiment & results ………………………………………….………….. 32 3.2.2.1. Data acquisition and preparation ……………………….…………… 34 3.2.2.2. Image enhancement …………………………………….…………… 34 3.2.2.3. Data augmentation ………………………………………………….. 34 3.2.2.4. Labeling ……………………………………………….…………….. 35 3.2.2.5. Localization ……………………………………………….………… 36 3.2.2.6. Image filtering ………………………………………………………. 38 3.2.2.7. Tumor extraction ……………………………………………………. 39 3.2.2.8. Contour extraction ………………………………………….……….. 40 3.2.2.9. 3D rendering ………………………………………………………... 40 3.2.3. System validation ………………………………………………………… 41 Chapter 4. Discussion ………………………………………………………………… 44 4.1. Textile inspection ……………………………………………………………… 44 4.2. Lung tumor imaging …………………………………………………………... 46 Chapter 5. Conclusion and future works ………………………….…….………….. 49 5.1. Quality inspection ………………………………………………….………….. 49 5.2. Medical imaging ………………………………………………………………. 49 5.3. Future works …………………………………………………….…………….. 49 References ……………………………………………………………….……………. 51 Publications …………………………………………………………………………… 64

    [1] H.Y. Ngan, G.K. Pang, N.H. Yung, Automated fabric defect detection—a review, Image and Vision Computing, 29 (2011) 442-458.
    [2] A. Kumar, Computer-vision-based fabric defect detection: A survey, IEEE Transactions on Industrial Electronics, 55 (2008) 348-363.
    [3] T. Wang, Y. Chen, M. Qiao, H. Snoussi, A fast and robust convolutional neural network-based defect detection model in product quality control, The International Journal of Advanced Manufacturing Technology, 94 (2018) 3465-3471.
    [4] S. Dlamini, C.-Y. Kao, S.-L. Su, C.-F. Jeffrey Kuo, Development of a real-time machine vision system for functional textile fabric defect detection using a deep YOLOv4 model, Textile Research Journal, 92 (2022) 675-690.
    [5] World Health Organization, Cancer, 2021. https://www.who.int/news-room/fact-sheets/detail/cancer (Access:August 2021)
    [6] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019, CA: a Cancer Journal for Clinicians, 69 (2019) 7-34.
    [7] Nature Portfolio, Lung cancer, 2021. https://www.nature.com/subjects/lung-cancer (Accessed: August 2021)
    [8] S. Novello, T. Le Chevalier, Chemotherapy for non-small-cell lung cancer. Part 1: Early-stage disease, Oncology (Williston Park, NY), 17 (2003) 357-364.
    [9] M.C. Godoy, T.J. Kim, C.S. White, L. Bogoni, P. De Groot, C. Florin, N. Obuchowski, J.S. Babb, M. Salganicoff, D.P. Naidich, Benefit of computer-aided detection analysis for the detection of subsolid and solid lung nodules on thin-and thick-section CT, American Journal of Roentgenology, 200 (2013) 74-83.
    [10] C.J. Mathew, A.M. David, C.M.J. Mathew, Artificial intelligence and its future potential in lung cancer screening, EXCLI Journal, 19 (2020) 1552.
    [11] S. Sohaib, B. Turner, J. Hanson, M. Farquharson, R. Oliver, R. Reznek, CT assessment of tumour response to treatment: comparison of linear, cross-sectional and volumetric measures of tumour size, The British Journal of Radiology, 73 (2000) 1178-1184.
    [12] G. Orsatti, C. Morosi, C. Giraudo, A. Varotto, F. Crimì, M. Bonzini, M. Minotti, A.C. Frigo, I. Zanetti, S. Chiaravalli, Pediatric Rhabdomyosarcomas: Three-Dimensional Radiological Assessments after Induction Chemotherapy Predict Survival Better than One-Dimensional and Two-Dimensional Measurements, Cancers, 12 (2020) 3808.
    [13] P.D. Mozley, L.H. Schwartz, C. Bendtsen, B. Zhao, N. Petrick, A.J. Buckler, Change in lung tumor volume as a biomarker of treatment response: a critical review of the evidence, Annals of Oncology, 21 (2010) 1751-1755.
    [14] S. Dlamini, Y.-H. Chen, C.-F.J. Kuo, Complete fully automatic detection, segmentation and 3D reconstruction of tumor volume for non-small cell lung cancer using YOLOv4 and region-based active contour model, Expert Systems with Applications, 212 (2023) 118661.
    [15] I.M. Nasser, S.S. Abu-Naser, Lung cancer detection using artificial neural network, International Journal of Engineering and Information Systems (IJEAIS), 3 (2019) 17-23.
    [16] X. Jun, J. Wang, J. Zhou, S. Meng, R. Pan, W. Gao, Fabric defect detection based on a deep convolutional neural network using a two-stage strategy, Textile Research Journal, 91 (2021) 130-142.
    [17] C. Zhang, X. Sun, K. Dang, K. Li, X.w. Guo, J. Chang, Z.q. Yu, F.y. Huang, Y.s. Wu, Z. Liang, Toward an expert level of lung cancer detection and classification using a deep convolutional neural network, The Oncologist, 24 (2019) 1159-1165.
    [18] F. Li, F. Li, Bag of tricks for fabric defect detection based on Cascade R-CNN, Textile Research Journal, 91 (2021) 599-612.
    [19] J. Jing, D. Zhuo, H. Zhang, Y. Liang, M. Zheng, Fabric defect detection using the improved YOLOv3 model, Journal of Engineered Fibers and Fabrics, 15 (2020) 1558925020908268.
    [20] J. George, S. Skaria, V. Varun, Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans, Medical Imaging 2018: Computer-Aided Diagnosis, SPIE, 2018, pp. 347-355.
    [21] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779-788.
    [22] A. Neubeck, L. Van Gool, Efficient non-maximum suppression, 18th International Conference on Pattern Recognition (ICPR'06), IEEE, 2006, pp. 850-855.
    [23] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, International Conference on Machine Learning, PMLR, 2015, pp. 448-456.
    [24] Y. Chen, C. Han, N. Wang, Z. Zhang, Revisiting feature alignment for one-stage object detection, arXiv preprint arXiv:1908.01570, (2019).
    [25] C. Bouveyron, S. Girard, C. Schmid, High-dimensional data clustering, Computational Statistics & Data Analysis, 52 (2007) 502-519.
    [26] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2117-2125.
    [27] J. Redmon, A. Farhadi, Yolov3: An incremental improvement, arXiv preprint arXiv:1804.02767, (2018).
    [28] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770-778.
    [29] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, The Journal of Machine Learning Research, 15 (2014) 1929-1958.
    [30] A. Bochkovskiy, C.-Y. Wang, H.-Y.M. Liao, Yolov4: Optimal speed and accuracy of object detection, arXiv preprint arXiv:2004.10934, (2020).
    [31] S. Yun, D. Han, S.J. Oh, S. Chun, J. Choe, Y. Yoo, Cutmix: Regularization strategy to train strong classifiers with localizable features, Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6023-6032.
    [32] G. Ghiasi, T.-Y. Lin, Q.V. Le, Dropblock: A regularization method for convolutional networks, Advances in Neural Information Processing Systems, 31 (2018).
    [33] K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid pooling in deep convolutional networks for visual recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 37 (2015) 1904-1916.
    [34] S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path aggregation network for instance segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8759-8768.
    [35] G. Oh, S. Lee, S.Y. Shin, Fast determination of textural periodicity using distance matching function, Pattern Recognition Letters, 20 (1999) 191-197.
    [36] J. Jing, P. Yang, P. Li, X. Kang, Supervised defect detection on textile fabrics via optimal Gabor filter, Journal of Industrial Textiles, 44 (2014) 40-57.
    [37] G. Gupta, Algorithm for image processing using improved median filter and comparison of mean, median and improved median filter, International Journal of Soft Computing and Engineering (IJSCE), 1 (2011) 304-311.
    [38] T. Sun, M. Gabbouj, Y. Neuvo, Center weighted median filters: some properties and their applications in image processing, Signal Processing, 35 (1994) 213-229.
    [39] G. Deng, L. Cahill, An adaptive Gaussian filter for noise reduction and edge detection, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, IEEE, 1993, pp. 1615-1619.
    [40] A. Dogra, P. Bhalla, Image sharpening by gaussian and butterworth high pass filter, Biomedical and Pharmacology Journal, 7 (2014) 707-713.
    [41] R. Zhu, Y. Wang, Application of Improved Median Filter on Image Processing, Journal of Computers., 7 (2012) 838-841.
    [42] D.A. Van Dyk, X.-L. Meng, The art of data augmentation, Journal of Computational and Graphical Statistics, 10 (2001) 1-50.
    [43] J. Cartucho, OpenLabeling: open-source image and video labeler, 2019.
    [44] T.F. Chan, L.A. Vese, Active contours without edges, IEEE Transactions on Image Processing, 10 (2001) 266-277.
    [45] D.B. Mumford, J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, (1989).
    [46] W.E. Lorensen, H.E. Cline, Marching cubes: A high resolution 3D surface construction algorithm, ACM siggraph Computer Graphics, 21 (1987) 163-169.
    [47] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, S. Savarese, Generalized intersection over union: A metric and a loss for bounding box regression, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 658-666.
    [48] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L. Zitnick, Microsoft coco: Common objects in context, European Conference on Computer Vision, Springer, 2014, pp. 740-755.
    [49] A. Bodnarova, M. Bennamoun, K. Kubik, Defect detection in textile materials based on aspects of the HVS, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 98CH36218), IEEE, 1998, pp. 4423-4428.
    [50] H.Y. Ngan, G.K. Pang, N.H. Yung, Motif-based defect detection for patterned fabric, Pattern Recognition, 41 (2008) 1878-1894.
    [51] D. Zhu, R. Pan, W. Gao, J. Zhang, Yarn-dyed fabric defect detection based on autocorrelation function and GLCM, Autex Research Journal, 15 (2015) 226-232.
    [52] A. Latif-Amet, A. Ertüzün, A. Erçil, An efficient method for texture defect detection: sub-band domain co-occurrence matrices, Image and Vision Computing, 18 (2000) 543-553.
    [53] C.-h. Chan, G.K. Pang, Fabric defect detection by Fourier analysis, IEEE transactions on Industry Applications, 36 (2000) 1267-1276.
    [54] D.-M. Tsai, T.-Y. Huang, Automated surface inspection for statistical textures, Image and Vision Computing, 21 (2003) 307-323.
    [55] X.Z. Yang, G.K. Pang, N.H.C. Yung, Discriminative fabric defect detection using adaptive wavelets, Optical Engineering, 41 (2002) 3116-3126.
    [56] H. Sari-Sarraf, J.S. Goddard, Vision system for on-loom fabric inspection, 1998 IEEE Annual Textile, Fiber and Film Industry Technical Conference (Cat. No. 98CH36246), IEEE, 1998, pp. 8/1-810.
    [57] X. Yang, G. Pang, N. Yung, Discriminative training approaches to fabric defect classification based on wavelet transform, Pattern Recognition, 37 (2004) 889-899.
    [58] H.Y. Ngan, G.K. Pang, S.-P. Yung, M.K. Ng, Wavelet based methods on patterned fabric defect detection, Pattern Recognition, 38 (2005) 559-576.
    [59] E.J. Wood, Applying Fourier and associated transforms to pattern characterization in textiles, Textile Research Journal, 60 (1990) 212-220.
    [60] C. Guo, Q. Ma, L. Zhang, Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform, 2008 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2008, pp. 1-8.
    [61] J. Campbell, A. Hashim, F. Murtagh, Flaw detection in woven textiles using space-dependent fourier transform, (1997).
    [62] D. Yapi, M.S. Allili, N. Baaziz, Automatic fabric defect detection using learning-based local textural distributions in the contourlet domain, IEEE Transactions on Automation Science and Engineering, 15 (2017) 1014-1026.
    [63] M.S. Allili, N. Baaziz, M. Mejri, Texture modeling using contourlets and finite mixtures of generalized Gaussian distributions and applications, IEEE Transactions on Multimedia, 16 (2014) 772-784.
    [64] F.S. Cohen, Z. Fan, S. Attali, Automated inspection of textile fabrics using textural models, IEEE Transactions on Pattern Analysis & Machine Intelligence, 13 (1991) 803-808.
    [65] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431-3440.
    [66] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 521 (2015) 436-444.
    [67] J.F. Jing, H. Ma, H.H. Zhang, Automatic fabric defect detection using a deep convolutional neural network, Coloration Technology, 135 (2019) 213-223.
    [68] H. Ng, S. Ong, K. Foong, P.-S. Goh, W. Nowinski, Medical image segmentation using k-means clustering and improved watershed algorithm, 2006 IEEE Southwest Symposium on Image Analysis and Interpretation, IEEE, 2006, pp. 61-65.
    [69] K. Shrivastava, N. Gupta, N. Sharma, Medical image segmentation using modified k means clustering, International Journal of Computer Applications, 103 (2014).
    [70] J. Katkar, T. Baraskar, V.R. Mankar, A novel approach for medical image segmentation using PCA and K-means clustering, 2015 International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), IEEE, 2015, pp. 430-435.
    [71] N. Dhanachandra, K. Manglem, Y.J. Chanu, Image segmentation using K-means clustering algorithm and subtractive clustering algorithm, Procedia Computer Science, 54 (2015) 764-771.
    [72] S. Ghosh, S.K. Dubey, Comparative analysis of k-means and fuzzy c-means algorithms, International Journal of Advanced Computer Science and Applications, 4 (2013).
    [73] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988) 12-49.
    [74] C. Li, C. Xu, C. Gui, M.D. Fox, Distance regularized level set evolution and its application to image segmentation, IEEE Transactions on Image Processing, 19 (2010) 3243-3254.
    [75] R. Hemalatha, T. Thamizhvani, A.J.A. Dhivya, J.E. Joseph, B. Babu, R. Chandrasekaran, Active contour based segmentation techniques for medical image analysis, Medical and Biological Image Analysis, 4 (2018) 2.
    [76] C. Li, C.-Y. Kao, J.C. Gore, Z. Ding, Minimization of region-scalable fitting energy for image segmentation, IEEE Transactions on Image Processing, 17 (2008) 1940-1949.
    [77] D. Ma, Q. Liao, Z. Chen, R. Liao, H. Ma, Adaptive local-fitting-based active contour model for medical image segmentation, Signal Processing: Image Communication, 76 (2019) 201-213.
    [78] S. Lakshmanaprabu, S.N. Mohanty, K. Shankar, N. Arunkumar, G. Ramirez, Optimal deep learning model for classification of lung cancer on CT images, Future Generation Computer Systems, 92 (2019) 374-382.
    [79] G. Kasinathan, S. Jayakumar, A.H. Gandomi, M. Ramachandran, S.J. Fong, R. Patan, Automated 3-D lung tumor detection and classification by an active contour model and CNN classifier, Expert Systems with Applications, 134 (2019) 112-119.
    [80] Z. Cao, T. Liao, W. Song, Z. Chen, C. Li, Detecting the shuttlecock for a badminton robot: A YOLO based approach, Expert Systems with Applications, 164 (2021) 113833.
    [81] L. Zhang, Y. Li, H. Chen, W. Wu, K. Chen, S. Wang, Anchor-free YOLOv3 for mass detection in mammogram, Expert systems with applications, 191 (2022) 116273.
    [82] L. Zhu, P. Spachos, Support vector machine and YOLO for a mobile food grading system, Internet of Things, 13 (2021) 100359.
    [83] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle, The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository, Journal of Digital Imaging, 26 (2013) 1045-1057.
    [84] S.G. Armato III, G. McLennan, L. Bidaut, M.F. McNitt‐Gray, C.R. Meyer, A.P. Reeves, B. Zhao, D.R. Aberle, C.I. Henschke, E.A. Hoffman, The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans, Medical Physics, 38 (2011) 915-931.
    [85] S. Krishnamurthy, G. Narasimhan, U. Rengasamy, Lung nodule growth measurement and prediction using auto cluster seed k-means morphological segmentation and shape variance analysis, International Journal of Biomedical Engineering and Technology, 24 (2017) 53-71.
    [86] S. Albahli, N. Nida, A. Irtaza, M.H. Yousaf, M.T. Mahmood, Melanoma lesion detection and segmentation using YOLOv4-DarkNet and active contour, IEEE Access, 8 (2020) 198403-198414.
    [87] R. Stojanovic, P. Mitropulos, C. Koulamas, Y. Karayiannis, S. Koubias, G. Papadopoulos, Real-time vision-based system for textile fabric inspection, Real-Time Imaging, 7 (2001) 507-518.
    [88] C.-F.J. Kuo, C.-J. Lee, C.-C. Tsai, Using a neural network to identify fabric defects in dynamic cloth inspection, Textile Research Journal, 73 (2003) 238-244.
    [89] C.-F.J. Kuo, C.-J. Lee, A back-propagation neural network for recognizing fabric defects, Textile Research Journal, 73 (2003) 147-151.
    [90] Y. Zhang, Z. Lu, J. Li, Fabric defect classification using radial basis function network, Pattern Recognition Letters, 31 (2010) 2033-2042.
    [91] H. Xie, Z. Wu, A robust fabric defect detection method based on improved RefineDet, Sensors, 20 (2020) 4260.
    [92] G. Hu, J. Huang, Q. Wang, J. Li, Z. Xu, X. Huang, Unsupervised fabric defect detection based on a deep convolutional generative adversarial network, Textile Research Journal, 90 (2020) 247-270.
    [93] Z. Liu, C. Zhang, C. Li, S. Ding, Y. Dong, Y. Huang, Fabric defect recognition using optimized neural networks, Journal of Engineered Fibers and Fabrics, 14 (2019) 1558925019897396.
    [94] S. Mei, Y. Wang, G. Wen, Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model, Sensors, 18 (2018) 1064.
    [95] Q. Zhou, J. Mei, Q. Zhang, S. Wang, G. Chen, Semi-supervised fabric defect detection based on image reconstruction and density estimation, Textile Research Journal, 91 (2021) 962-972.
    [96] J. Jing, Z. Wang, M. Rätsch, H. Zhang, Mobile-Unet: An efficient convolutional neural network for fabric defect detection, Textile Research Journal, 92 (2022) 30-42.
    [97] K. Xu, H. Jiang, W. Tang, A New Object Detection Algorithm Based on YOLOv3 for Lung Nodules, Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence, 2020, pp. 233-239.
    [98] J. Sang, M.S. Alam, H. Xiang, Automated detection and classification for early stage lung cancer on CT images using deep learning, Pattern Recognition and Tracking XXX, SPIE, 2019, pp. 200-207.
    [99] G. Aresta, T. Araújo, C. Jacobs, B.v. Ginneken, A. Cunha, I. Ramos, A. Campilho, Towards an automatic lung cancer screening system in low dose computed tomography, Image Analysis for Moving Organ, Breast, and Thoracic Images, Springer2018, pp. 310-318.
    [100] W.J. Sori, J. Feng, S. Liu, Multi-path convolutional neural network for lung cancer detection, Multidimensional Systems and Signal Processing, 30 (2019) 1749-1768.
    [101] U. Kamal, A.M. Rafi, R. Hoque, J. Wu, M. Hasan, Lung cancer tumor region segmentation using recurrent 3d-denseunet, International Workshop on Thoracic Image Analysis, Springer, 2020, pp. 36-47.
    [102] X. Huang, W. Sun, T.-L.B. Tseng, C. Li, W. Qian, Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks, Computerized Medical Imaging and Graphics, 74 (2019) 25-36.
    [103] A. Koç, A. Güveniş, Design and evaluation of an accurate CNR-guided small region iterative restoration-based tumor segmentation scheme for PET using both simulated and real heterogeneous tumors, Medical & Biological Engineering & Computing, 58 (2020) 335-355.
    [104] M. Dang, J. Modi, M. Roberts, C. Chan, J.R. Mitchell, Validation study of a fast, accurate, and precise brain tumor volume measurement, Computer Methods and Programs in Biomedicine, 111 (2013) 480-487.
    [105] C.-F.J. Kuo, B.-H. Ke, N.-Y. Wu, J. Kuo, H.-H. Hsu, Prognostic value of tumor volume for patients with advanced lung cancer treated with chemotherapy, Computer Methods and Programs in Biomedicine, 144 (2017) 165-177.

    無法下載圖示 全文公開日期 2027/02/09 (校內網路)
    全文公開日期 2027/02/09 (校外網路)
    全文公開日期 2027/02/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE