簡易檢索 / 詳目顯示

研究生: 王路祺
Lu Ki Ong
論文名稱: 結合含銅廢水處理與廢食用油水解以及後續酯化反應以生產生質柴油
Integration of Cu-containing wastewater treatment with waste cooking oil hydrolysis and subsequent esterification to produce biodiesel
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: Suryadi Ismadji
Suryadi Ismadji
Truong Chi Thanh
Truong Chi Thanh
王孟菊
Meng-Jiy Wang
朱義旭
Yi-Hsu Ju
Felycia Edi Soetaredjo
Felycia Edi Soetaredjo
Tran Nguyen Phuong Lan
Tran Nguyen Phuong Lan
Masahiro Muraoka
Masahiro Muraoka
Huynh Lien Huong
Huynh Lien Huong
陳耀騰
Yaw-Terng Chern
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 52
中文關鍵詞: 生質柴油廢食用油水解酯化重金屬廢水
外文關鍵詞: Biodiesel, Waste cooking oil, Hydrolysis, Esterification, Heavy metal, Wastewater
相關次數: 點閱:395下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

生質柴油為從植物油或動物脂肪製造之再生燃料。使用精製植物油為生產生質柴油之原料不利於未來食物之永續性。 以廢食用油取代植物油可紓緩此問題。以傳統酸、鹼催化法將廢食用油轉換成生質柴油時,由於廢食用油中高含量之水及游離脂肪酸將會造成問題。兩步驟無觸媒法,亦即水解-酯化,可用來處理此問題。本研究利用合成之含銅廢水來水解廢食用油,再進行酯化反應。在水解溫度為225°C、水對三甘油酯莫耳比為30:1、反應時間為8小時,使用500 mg/kg CuSO4溶液可得到脂肪酸產率約80%。水解過程中,CuSO4 透過離子交換與脂肪酸反應產生H2SO4及疏水性溶於油相之Cu皂鹽。透過從水相轉移Cu2+到油相可得到50%移除率,經過5次批式反應此數字可增加至98.9%。將水解油所得脂肪酸酯化之最佳條件為溫度219.7°C、甲醇對脂肪酸莫耳比12:1、反應時間131.6分鐘,此時可得含低濃度皂鹽之生質柴油,其產率為96-97%。


Biodiesel is a renewable fuel derived from vegetable oils or animal fats. Common use of refined vegetable oils as oil feedstock for biodiesel is threat to the sustainability of food in the future. Replacing refined vegetable oils with waste cooking oil potentially solves this problem. Despite of the economic and environmental benefits in the use of waste cooking oil, typical acid- and base-catalyzed biodiesel production process from waste cooking oil often find some problems related to the considerable moisture and free fatty acid content in the waste cooking oil. Two steps non-catalytic process namely hydrolysis-esterification has been proposed to overcome this problem. This study utilized synthetic Cu wastewater for hydrolysis of waste cooking oil prior to the esterification process. Hydrolysis at 225°C and water to triglycerides molar ratio of 30:1 for 8 h using 500 mg/kg CuSO4 solution was found to produce considerable fatty acid yield about 80%. During hydrolysis, CuSO4 underwent ion exchange reaction with fatty acids to produce H2SO4 and hydrophobic Cu soap that tended to dissolve in the oil phase. Transfer of Cu2+ from water to oil phase brought about 50% of removal, which could be extended to 98.9% after 5 series of batch reactions. Esterification of hydrolyzed oil was optimum at temperature of 219.7°C, methanol to total fatty acid molar ratio of 12:1, and reaction time of 131.6 min. Optimum biodiesel yield achieved was about 96-97% with low Cu soap concentration.

摘要.........................................................i Abstract....................................................ii Acknowledgement............................................iii Table of Content............................................iv List of Abbreviations.......................................vi List of Figures............................................vii List of Tables............................................viii Chapter 1 : Introduction.....................................1 1.1. Background..............................................1 1.2. Objectives..............................................2 Chapter 2 : Literature Review................................3 2.1. Biodiesel...............................................3 2.2. Waste cooking oil (WCO).................................6 2.3. Hydro-esterification....................................7 2.4. Response surface methodology (RSM)......................9 Chapter 3 : Experimental Methodology.........................11 3.1. Materials...............................................11 3.2. Equipments..............................................12 3.3. Experimental Method.....................................13 3.3.1. WCO hydrolysis........................................13 3.3.2. Metal extraction......................................14 3.3.3. Biodiesel production from hydrolyzed WCO..............14 Chapter 4 : Results and Discussion...........................16 4.1. Characteristic of WCO...................................16 4.2. Effects of temperature and time on hydrolysis of WCO....16 4.3. Mechanism of catalysis and Cu transport.................19 4.4. Effects of copper concentration on WCO hydrolysis.......20 4.5. Effect of pH............................................21 4.6. Effect of anion type....................................23 4.7. Effect of chelating agent presence......................23 4.8. Application of other divalent heavy metal ions..........25 4.9. Esterification of hydrolyzed WCO........................26 Chapter 5 : Conclusion and Recommendations...................31 Appendix....................................................A-1

[1] FAO. Water-Energy-Food-Nexus 2017.
[2] Gui MM, Lee KT, Bhatia S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy. 2008;33:1646-53.
[3] Sajid Z, Khan F, Zhang Y. Process simulation and life cycle analysis of biodiesel production. Renewable Energy. 2016;85:945-52.
[4] Babajide O, Petrik L, Amigun B, Ameer F. Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology. Energies. 2010;3:1691.
[5] Azcan N, Yilmaz O. Microwave assisted transesterification of waste frying oil and concentrate methyl ester content of biodiesel by molecular distillation. Fuel. 2013;104:614-9.
[6] Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG. Synthesis of Biodiesel via Acid Catalysis. Ind Eng Chem Res. 2005;44:5353-63.
[7] Kusdiana D, Saka S. Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel. 2001;80:693-8.
[8] Kusdiana D, Saka S. Two-step preparation for catalyst-free biodiesel fuel production. Appl Biochem Biotechnol. 2004;115:781-91.
[9] Barakat MA. New Trends in Removing Heavy Metals from Industrial Wastewater. Arabian J Chem. 2011;4:361-77.
[10] Farahat E, Linderholm HW. The effect of long-term wastewater irrigation on accumulation and transfer of heavy metals in Cupressus sempervirens leaves and adjacent soils. Sci Total Environ. 2015;512-513:1-7.
[11] Alptekin E, Canakci M. Optimization of transesterification for methyl ester production from chicken fat. Fuel. 2011;90:2630-8.
[12] Lam MK, Lee KT, Mohamed AR. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnol Adv. 2010;28:500-18.
[13] Bart JCJ, Palmeri N, Cavallaro S. Biodiesel Science and Technology: From Soil to Oil. USA: Woodhead Publishing Ltd.; 2010.
[14] Naylor RL, Higgins MM. The political economy of biodiesel in an era of low oil prices. Renewable and Sustainable Energy Reviews. 2017;77:695-705.
[15] OECD-FAO. OECD-FAO Agricultural Outlook 2016-2025. Paris: OECD Publishing; 2016.
[16] Tsai W-T, Lin C-C, Yeh C-W. An analysis of biodiesel fuel from waste edible oil in Taiwan. Renewable and Sustainable Energy Reviews. 2007;11:838-57.
[17] He X, Iasmin M, Dean LO, Lappi SE, Ducoste JJ, de los Reyes FL. Evidence for Fat, Oil, and Grease (FOG) Deposit Formation Mechanisms in Sewer Lines. Environ Sci Technol. 2011;45:4385-91.
[18] Hsu S. More brands slide into investigation. Taipei Times; 2014.
[19] Lam SS, Liew RK, Jusoh A, Chong CT, Ani FN, Chase HA. Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renewable and Sustainable Energy Reviews. 2016;53:741-53.
[20] Kulkarni MG, Dalai AK. Waste Cooking Oil An Economical Source for Biodiesel:  A Review. Ind Eng Chem Res. 2006;45:2901-13.
[21] Frankel EN. Lipid oxidation. Prog Lipid Res. 1980;19:1-22.
[22] Cvengroš J, Cvengrošová Z. Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids. Biomass Bioenergy. 2004;27:173-81.
[23] Machado GD, de Souza TL, Aranda DAG, Pessoa FLP, Castier M, Cabral VF, et al. Computer simulation of biodiesel production by hydro-esterification. Chemical Engineering and Processing: Process Intensification. 2016;103:37-45.
[24] Gervajio GC. Fatty Acids and Derivatives from Coconut Oil. In: Seidel A, editor. Kirk-Othmer Chemical Technology of Cosmetics. New Jersey: John Wiley & Sons; 2013. p. 450-1.
[25] Lawrence EA. Hydrolysis methods. J Am Oil Chem Soc. 1954;31:542-4.
[26] Mills V, McClain HK. Fat Hydrolysis. Ind Eng Chem. 1949;41:1982-5.
[27] Minami E, Saka S. Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel. 2006;85:2479-83.
[28] Lascaray L. Industrial fat splitting. J Am Oil Chem Soc. 1952;29:362-6.
[29] Alenezi R, Leeke GA, Santos RCD, Khan AR. Hydrolysis kinetics of sunflower oil under subcritical water conditions. Chem Eng Res Des. 2009;87:867-73.
[30] Hołyst R, Poniewierski A. Thermodynamics for Chemists, Physicists and Engineers. Poland: Springer; 2012.
[31] W. King J, L. Holliday R, R. List G. Hydrolysis of soybean oil . in a subcritical water flow reactor. Green Chem. 1999;1:261-4.
[32] Moquin PHL, Temelli F. Kinetic modeling of hydrolysis of canola oil in supercritical media. J Supercrit Fluids. 2008;45:94-101.
[33] Box GEP, Wilson KB. On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society Series B (Methodological). 1951;13:1-45.
[34] Gilmour SG, Trinca LA. Response surface experiments on processes with high variation. In: Khuri AI, editor. Response surface methodology and related topics Singapore: World Scientific Publishing Co. Pte. Ltd.; 2006. p. 27.
[35] Otto M. Chemometrics - Statistics and Computer Application in Analytical Chemistry. Germany: Wiley-VCH Verlag GmbH & Co.; 2017.
[36] Leonardis AD, Macciola V, Felice MD. Copper and iron determination in edible vegetable oils by graphite furnace atomic absorption spectrometry after extraction with diluted nitric acid. Int J Food Sci Technol. 2000;35:371-5.
[37] Huynh LH, Nguyen PLT, Ho QP, Ju Y-H. Catalyst-free fatty acid methyl ester production from wet activated sludge under subcritical water and methanol condition. Bioresource Technology. 2012;123:112-6.
[38] Alenezi R, Leeke GA, Santos RCD, Khan AR. Hydrolysis kinetics of sunflower oil under subcritical water conditions. Chem Eng Res Des. 2009;87:867-73.
[39] Lide DR. CRC Handbook of Chemistry and Physics. 90th ed. Florida: CRC Press; 2010.
[40] Sturzenegger A, Sturm H. Hydrolysis of Fats at High Temperatures. Ind Eng Chem. 1951;43:510-5.
[41] Williams RC, Russel HW. Process for removing metallic soap from lubricating emulsions. 1,955,522. 1934.
[42] Chang S, Kamaruzaman J, Tjoontow T, Norli I. Extraction of Cu(II) from aqueous solutions by vegetable oil-based organic solvents. 5th IASME/WSEAS International Conference on Energy & Environment Wisconsin, USA: World Scientific and Engineering Academy and Society (WSEAS); 2010. p. 96-100.
[43] Chang SH, Teng TT, Ismail N, Alkarkhi AFM. Selection of design parameters and optimization of operating parameters of soybean oil-based bulk liquid membrane for Cu(II) removal and recovery from aqueous solutions. J Hazard Mater. 2010;190:197-204.
[44] Šiška J. Extraction of heavy metals and ammonium from waters by unsaturated fatty acids and their soaps. Hydrometallurgy. 2005;76:155-72.
[45] Lloyd PJD. Principles of Industrial Solvent Extraction. In: Rydberg J, Cox M, Musikas C, Choppin GR, editors. Solvent Extraction Principles and Practice. 2nd ed. USA: Marcel Dekker, Inc.; 2004.
[46] Yang JS, Cao J, Xing GL, Yuan HL. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresource Technology. 2015;175:537-44.
[47] Larson K, Raghuraman B, Wiencek J. Mass-Transfer Model of Mercury Removal from Water via Microemulsion Liquid Membranes. Ind Eng Chem Res. 1994;33:1612-9.
[48] Company PAG. Continuous countercurrent hydrolysis of fat. 466,596. Proctor And Gamble Company; 1935.
[49] Sinnema J, Graef LD, Meisel T, Mussler I. Non-corrosive catalytic hydrolysis of fatty acid esters to fatty acids. 6,646,146 B1. HaltermannAscot GmbH; 2003.
[50] Milliren AL, Wissinger JC, Gottumukala V, Schalla CA. Kinetics of soybean oil hydrolysis in subcritical water. Fuel. 2013;108:277-81.
[51] Pinto JSS, Lanças FM. Hydrolysis of corn oil using subcritical water. J Braz Chem Soc. 2006;17:85-9.
[52] Kul M, Oskay KO. Separation and recovery of valuable metals from real mix electroplating wastewater by solvent extraction. Hydrometallurgy. 2015;155:153-60.
[53] Lou J-C, Huang Y-J, Han J-Y. Treatment of printed circuit board industrial wastewater by Ferrite process combined with Fenton method. J Hazard Mater. 2009;170:620-6.
[54] Choe E, Min DB. Mechanisms and Factors for Edible Oil Oxidation. Comprehensive Reviews in Food Science and Food Safety. 2006;5:169-86.
[55] Ong HR, Rahman Khan MM, Ramli R, Du Y, Xi S, Yunus RM. Facile synthesis of copper nanoparticles in glycerol at room temperature: formation mechanism. RSC Adv. 2015;5:24544-9.
[56] Drzymala J. Chemical equilibria in the oleic acid-water-NaCl system. J Colloid Interface Sci. 1985;108:257-63.
[57] Elliott DC, L. John Sealock J. Aquoeus Catalyst Systems for the Water-Gas Shift Reaction. 1. Comparative Catalyst Studies. Ind Eng Chem Prod Res Dev. 1983;22:426-31.
[58] Ong LK, Nguyen PLT, Soetaredjo FE, Ismadji S, Ju Y-H. Effect of subcritical water on homogeneous catalysis of used cooking oil hydrolysis. RSC Adv. 2016;6:64977-85.
[59] Lin Y-M, Yen S-C. Effects of additives and chelating agents on electroless copper plating. Appl Surf Sci. 2001;178:116-26.
[60] Kır E, Çengeloglu Y, Ersöz M. The effect of chelating agent on the separation of Fe(III) and Ti(IV) from binary mixture solution by cation-exchange membrane. J Colloid Interface Sci. 2005;292:498-502.
[61] Farha SAA, Badawy NA, El-Bayaa AA, Garamon SE. The Effect of Chelating Agent on the Separation of Some Metal Ions from Binary Mixture Solution by Cation-Exchange Resin Nat Sci. 2010;8:16-25.
[62] Kanicky JR, Shah DO. Effect of Premicellar Aggregation on the pKa of Fatty Acid Soap Solutions. Langmuir. 2003;19:2034-8.
[63] Wang C-C, Yang C-H, Lee C-H, Lee G-H. Hydrothermal Synthesis and Structural Characterization of a Two-Dimensional Polymeric Copper(II) Complex Containing an Unusual Bridged H2edta2- Ligand. lnorg Chem. 2001;41:429-32.
[64] Mastropaolo D, Powers DA, Potenza JA, Schugar HJ. Crystal Structure and Magnetic Properties of Copper Citrate Dihydrate, Cu2C6H4O7.2H2O. lnorg Chem. 1976;15:1444-9.
[65] Neevel JG. Phytate: a Potential Conservation Agent for the Treatment of Ink Corrosion Caused by Irongall Inks. Restaurator. 1995;16:143-60.
[66] Baes CF, Mesmer RE. The Hydrolysis of Cations. Canada: John Wiley & Sons, Inc.; 1976.
[67] Martell AE. Critical Stability Constant. In: Smith RM, editor. USA: Springer Science+Business Media; 1982.
[68] Mulkidjanian AY, Galperin MY. On the Origin of Life in the Zinc World: 2. Validation of the Hypothesis on the Photosynthesizing Zinc Sulfide Edifices as Cradles of Life on Earth. In: Trimm HH, editor. Inorganic Chemistry: Reactions, Structure and Mechanisms. 1st ed. Canada: Apple Academic Press Inc.; 2011. p. 125.
[69] Pillay AE, Elkadi M, Fok SC, Stephen S, Manuel J, Khan MZ, et al. A comparison of trace metal profiles of neem biodiesel and commercial biofuels using high performance ICP-MS. Fuel. 2012;97:385-9.
[70] de Souza RM, Leocádio LG, da Silveira CLP. ICP OES Simultaneous Determination of Ca, Cu, Fe, Mg, Mn, Na, and P in Biodiesel by Axial and Radial Inductively Coupled Plasma-Optical Emission Spectrometry. Anal Lett. 2008;41:1615-22.
[71] Betha R, Balasubramanian R. Emissions of particulate-bound elements from stationary diesel engine: Characterization and risk assessment. Atmos Environ. 2011;45:5273-81.
[72] Shukla PC, Gupta T, Labhsetwar NK, Agarwal AK. Trace metals and ions in particulates emitted by biodiesel fuelled engine. Fuel. 2017;188:603-9.
[73] Cassee FR, Héroux M-E, Gerlofs-Nijland ME, Kelly FJ. Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhal Toxicol. 2013;25:802-12.

QR CODE