簡易檢索 / 詳目顯示

研究生: 黃信達
Hsin - Ta Huang
論文名稱: JPEG2000系統之位元平面編碼分析與加速演算法設計
Analysis and speed-up algorithm design of bit plane for JPEG2000 system
指導教授: 王乃堅
Nai-Jian Wang
口試委員: 蘇順豐
Shun-Feng Su
韓永祥
Yunghsiang S. Han
鍾順平
Shun-Ping Chung
方劭云
Shao-Yun Fang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 54
中文關鍵詞: JPEG2000EBCOTDWT
外文關鍵詞: JPEG2000, EBCOT, DWT
相關次數: 點閱:148下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文提出對JPEG2000 裡的嵌入式區塊編碼的詳細分析和高效的優化設計。在JPEG2000系統中,EBCOT需要相當大的運算量,為了增進EBCOT的效率,我們提出結合二個加速演算法,Pass Prediction 和Sample Skipping。Pass Prediction 演算法預測下一個位元平面的pass狀態,再利用相鄰位元以傳播的方式得到下一個位元平面所有pass的狀態。根據EBCOT的編碼原則,同一位元己被某pass編碼後,即無需要再由其它pass編碼,傳統編碼方式.即使己經由某pass編碼,一樣會將全部的pass掃描一遍。Sample Skipping演算法則是標記己被編碼過的位元,區別出需要被編碼的位元,以及不需要被編碼的位元,並跳過不需編碼的位元,減少不必要的掃描過程以加速整個壓縮的過程。根據實驗結果,我們提出的加速演算法在有損壓縮部份,可減少灰階影像6.2%~7.3%的壓縮時間;減彩色影像9.2% ~ 18.6%的壓縮時間,無損壓縮部份,可減少灰階影像14.2%~20%的壓縮時間;彩色影像10.7% ~ 16.8%的壓縮時間。


This paper analyzes JPEG2000 embedded block coding and a design of efficiency optimization in detail. In JPEG2000 systems, the EBCOT requires considerable computation. In order to improve the efficiency of EBCOT, we integrated the two speed-up algorithms - Pass Prediction and Sample Skipping. The Pass Prediction algorithm predicts the pass state in the next bit-plane, and acquires the entire pass states in the next bit-plane through pass propagation of neighboring bit. According to EBCOT coding rule, once a bit has been coded by a certain pass, it will require no more coding by another pass. With the traditional coding algorithm, a bit that has been coded by a certain pass will still have to go through all pass scanning again. To distinguish the bits that require coding and those don’t require so, Sample Skipping marks the bit which has been coded; in this way, the compressing and scanning time that used to be wasted on the coded bits is now saved up. The results of our experiment show that the proposed algorithm reduces 6.2%~7.3% the amount of scanning time for gray-level images and 9.2%~18.6% the amount of scanning time for color images in loosy compression ,and reduces 14.2%~20% the amount of scanning time for gray-level images and 10.7% to 16.8% for color images in lossless compression.

Abstract 2 第1章 緒論 10 1-1 研究背景 10 1-2技術趨勢 12 1-3 JPEG2000簡介 14 1-4 複雜度分析 17 1-5 論文架構 18 第2章 JPEG2000編碼方式 19 2-1 JPEG2000前處理 20 2-2離散小波轉換 22 2-2-1一維離散小波轉換 23 2-2-2二維離散小波轉換 24 2-2-3多維離散小波轉換分解與合成 25 2-3量化(Quantization) 27 2-4第一層編碼器(Tier-1) 28 2-4-1 上下文模組化(context modeling) 28 2-4-2 MQ-編碼器 35 2-5第二層編碼器(Tier-2) 36 第3章 位元平面加速演算法 37 3-1 位元平面相關加速演算法 37 3-2 Sample Skip +Pass Prediction 加速演算法 40 第4章 實驗與分析結果 42 第5章 結論與未來展望 52 參考文獻 53

參考文獻
[1] C. H. Chou, K. C. Liu, and P. H. Chung, "Perceptually optimized rate control for JPGE2000 coding of color images," Image and signal processing, vol. 2, pp. 80-84, May. 2008.

[2] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 still image coding system: an overview,” IEEE transactions on consumer electronics, Vol. 46, no. 4, pp. 1103-1127, Nov 2000.

[3] C. J. Lian, K. F. Chen, H. H. Chen, and L. G. Chen, “Analysis and architecture design of block-coding engine for EBCOT in JPEG-2000”, IEEE transactions on circuits and systems for video technology, vol. 13, no. 3, pp. 219-230, Mar. 2003.

[4] C. Karaku, A. C. Gurbuz, and B. Tavli, "Analysis of energy efficiency of compressive sensing in wireless sensor networks," IEEE Sensors Journal, vol. 13, no. 5, pp. 1999-2008, May. 2013.

[5] D. Harihara Santosh, U. V. S. Sitarama Varma, K. S. K. Chaitanya Varma, Meena Jami, and V. V. N. S. Dileep, "Absolute moment block truncation coding for color image compression," International Journal of Innovative Technology and Exploring Engineering (IJITEE), vol. 2, no. 6, May. 2013.

[6] E. Sun, X. Shen, and H. Chen, "A low energy Image compression and transmission in wireless multimedia sensor networks," Advanced in control engineering and information science, vol. 15, pp.241 -251, Dec. 2011.

[7] G. Strang, and T. Nguyen, “Wavelets and filter banks”, Wellesley, Cambridge, 1996.

[8] H. C. Fang, T. C. Wang, C. J. Lian, T. H. Chang, and L. G. Chen, “High speed memory efficient EBCOT architecture for JPEG2000,” Circuits and Systems, (ISCAS), vol. 2, pp. II-736 - II-739, May. 2003.

[9] H. Man, F. Kossentini, and M. J. T. Smith, “An error resilient coding technique for JPEG2000,” Proc. of IEEE international conference on image processing, vol. 3, pp. 364-367, 2000.

[10] Information technology - JPEG 2000 image coding system, ISO/IEC Final Committee Draft 15444-1, 2000.
[11] K. F. Chen, C. J. Lian, H. H. Chen, L. G. Chen, “Analysis and architecture design of EBCOT for JPEG-2000,” vol. 2, pp. 765-768, May. 2001.

[12] K. L. Lin, “Analysis and architecture design for JPEG2000 still image encoding system,” Jun. 2002.

[13] K. Sau, R. K. Basak, and A. Chanda, "Image compression based on block truncation coding using Clifford algebra," International conference on computational Intelligence: Modeling Techniques and Applications (CIMTA), vol. 10, pp.699 -706, Dec. 2013.

[14] L. F. Chen, T. L. Huang, and Y. K. Lai, “Memory analysis and throughput enhancement for cost effective bit-plane Coder in JPEG2000 applications,” vol. 5, pp. 17-20, Mar. 2005.

[15] L. Roto, I. R. Bahar, and J. L. Nundy, "A novel parallel tier-1 coder for JPEG2000 using GPUs," Application specific processors (SASP), 2011 IEEE 9th symposium on, pp. 129-136, Jun. 2011.

[16] M. Ciznicki, K. Kurowski, and A. Plaza, "Graphics processing unit implementation of JPEG2000 for hyperspectral image compression," Journal of Applied Remote Sensing, vol. 6, 2012.

[17] M. Rabbani, and R. Joshi, “An overview of the JPEG2000 still image compression standard,” Vol. 17, No. 1, pp. 3-48, Jan. 2002.

[18] M. Vetterli, and J. Kovacevic, “Wavelets and sub-band coding,” Prentice Hall PTR, Englewood Cliffs, NJ, 1995.

[19] M. W. Marcellin, M. A. Lepley, A. Bilgin, T. J. Flohr, T. T. Chinen, and J. H. Kasner, “An overview of quantization in JPEG-2000,” vol.17, no. 1, pp. 73-84, Dec. 2001.

[20] OpenJPEG "OpenJPEG JPEG 2000 compression library", Available at http://www.openjpeg.org/.

[21] P. Y. Chen, and J. Y. Chang, "An adaptive quantization scheme for 2-D DWT coefficients," International journal of applied science and engineering, vol. 11, no. 1, pp.85 -100, Nov. 2013.

[22] S. Rathi, and Z. F. Wang, “Fast EBCOT encoder architecture for JPEG2000,” Signal processing systems, SIPS, pp. 595-599, Oct. 2007.

[23] T. H. Tsai, and K. L. Lin, “Speed-improved methods for EBCOT of JPEG2000,” IEEE International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp.101-104, 2002.

[24] X. Tian, L. Wu, Y. H. Tan, and J. W. Tian, "Efficient multi-input/multi-output VLSI architecture for two-dimensional lifting-based discrete wavelet transform," Computers, IEEE Trans. vol. 60, no. 8, pp.1207 -1211, Aug. 2011.

[25] Y. Hu, and C. C. Jong, "A memory-efficient high-throughput architecture for lifting-based multi-level 2-D DWT," IEEE Trans. Signal Process., vol. 61, no. 20, pp. 4975 -4987, Oct. 2013.

QR CODE