簡易檢索 / 詳目顯示

研究生: 袁梓捷
Tzu-Chieh Yuan
論文名稱: 應用電腦斷層掃描影像三維重建於幼兒氣管狹窄症之輔助治療並建立幼兒正常氣管長度模型
Application of Computer Tomography Image for 3-D Recon-struction in Children Tracheal Stenosis as Adjunctive Therapy and Build the Normal Children Trachea Length Model
指導教授: 郭中豐
Chung-Feng Kuo
口試委員: 呂宜興
Yi-Shing Leu
黃昌群
Chang-Chiun Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 87
中文關鍵詞: 氣管狹窄距離正規化等位函數法等值面提取幼兒正常氣管長模型
外文關鍵詞: tracheal stenosis, distance regularized level set evolution, iso-surfaces extraction technique, children normal trachea length model
相關次數: 點閱:128下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究結合影像處理技術應用至幼兒氣管狹窄症,幼兒若患有氣管狹窄症,將會直接影響其日常生活,必須持續追蹤並透過手術或是藥物治療,以防止後續再狹窄之可能,同時也需要防止其它併發症之發生,而於幼兒氣管狹窄病之診斷上,目前以氣管截面積以及體積為診斷上重要之參考依據,故本研究擬發展一套利用幼兒氣管狹窄電腦斷層掃描影像三維重建並準確計算截面積及體積做為醫師臨床診斷之輔助系統。
    本研究主要分為兩個部分,第一部分為運用影像處理技術分析電腦斷層掃描影像並進行數據計算。本研究自行開發一套新的改良型中值濾波器,可有效對電腦斷層掃描影像濾除雜訊且保留紋理,接著設計擷取氣管組職之流程。首先,對第一張影像進行區域成長並取得其邊緣座標,利用其找尋座標中心後做為下一張影像之成長起始點,接著利用取得之邊緣座標計算內縮參考陣列(shrink refer-ence array),做為距離正規化等位函數法之起始基準輪廓,並疊代成長至三維影像中之橫截面,最後透過等值面提取技術(iso-surface extraction technology)建立三維重建影像並計算截面積及體積,之後與治療指標Cotton法做結合,提出國內幼兒氣管狹窄症治療指標,以台北馬偕醫院實際樣本做驗證其正確率達100%,證明本研究所發展之利用幼兒氣管狹窄電腦斷層掃描影像之三維重建及計算截面積及體積做為醫師臨床診斷輔助系統確實具有成效。
    第二部分為預測幼兒於正常體位的BMI值之下的正常氣管長度,本研究利用曲線擬合將155組支氣管鏡數據做出一個預測幼兒正常氣管長模型。驗證實驗中,模型之置信區間為95%,RMSE誤差為6.382,由此可提供醫學科學於往後臨床研究中有一嶄新的參考模型。


    This research applied image processing techniques to children tracheal stenosis. Children with tracheal stenosis have a direct impact on their daily lives. Through medication or surgery, we must keep track of their conditions to prevent possible subsequent restenosis. The tracheal cross-sectional area and volume were important references for clinicians on the diagnosis. This research used a computerized to-mography scan of tracheal stenosis to execute a three-dimensional re-construction, and accurately calculate the cross-sectional area and volume as a clinical diagnosis of the assistant system.
    This research could be divided into two parts. The first part was using image processing techniques to analysis computer tomography image and data calculation. This research developed a newly improved median filter, which could effectively eliminate noises and keep the texture of the image. A tracheal-capturing process was designed. First, applied region growing method to the first image and gain its edge coordinates. Then the center of the coordinate was used to replace the growing seed for the next image. The edge of the coordinate calculation was used to calculate the shrink reference array. Then the shrink ref-erence array was used as a starting contour for distance regularized level set evolution and iteratively grown to sectional area. Finally, through iso-surface extraction technology the Three-dimensional re-construction image was built with combination of Cotton law after calculating cross-sectional area and volume. This research proposed a domestic children tracheal stenosis treatment standard, with 100% accuracy from clinician’s actual sample verification of Taipei Mackay Memorial Hospital. The result verified the effectiveness of our pro-posed three dimensional reconstruction. By using tracheal stenosis computer tomography image and calculation of sectional area and volume, our proposed system could be effectively assisting clinical diagnosis for doctors.
    The second part was to predict the normal trachea length in the normal children's BMI values. In this research, curve fitting was used to make a children normal trachea length prediction model with 155 groups of bronchoscopy data. In verification experiment, the model’s confidence interval is 95%, RMSE is 6.382. It proved that this new reference model could be provided for subsequent clinical studies and medical science.

    Keyword: tracheal stenosis, distance regularized level set evolution, iso-surfaces extraction technique, children normal trachea length model

    摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XI 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.2.1 醫學影像 2 1.2.2 影像濾波理論 3 1.2.3 輪廓擷取理論 5 1.3 研究目的 6 1.4 論文架構 7 第2章 軟硬體系統介紹與醫學影像種類 9 2.1 硬體設備與作業系統 9 2.2 影像處理軟體 9 2.3 醫學影像 10 第3章 相關醫學簡介 12 3.1 氣管構造 12 3.1.1 聲帶構造 12 3.1.2 支氣管 14 3.2 先天性氣管狹窄 14 3.3 後天性氣管狹窄 16 第4章 研究方法及相關理論 17 4.1 影像空間 17 4.2 影像前處理 18 4.2.1 韋納濾波 18 4.2.2 改良型中值濾波 19 4.2.3 排序統計濾波器 21 4.2.4 相似度濾波 23 4.3 輪廓提取理論 24 4.3.1 主動輪廓模型 24 4.3.2 等位函數法 27 4.3.3 距離正規化等位函數法 29 4.4 擷取氣管組織流程 32 4.5 三維重建 33 4.6 迴歸分析 37 第5章 實驗與結果與分析 38 5.1 影像處理流程 38 5.1.1 影像前處理 39 5.1.2 改良型中值濾波驗證 42 5.1.3 擷取氣管組織流程 44 5.1.4 輪廓擷取 45 5.2 三維重建及數據分析 46 5.2.1 三維重建 47 5.2.2 數據分析 48 5.3 幼兒氣管長模型 53 第6章 結論與未來研究方向 58 6.1 結論 58 6.2 未來研究方向 59 參考文獻 61 附錄A 67 附錄B 76 附錄C 83

    [1] Li, B. N., Chui, C. K., Chang, S., and Ong, S. H., “Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation,” Computers in Biology and Medi-cine, Vol. 41, No. 1, pp. 1-10, 2011.
    [2] Ma, Z., Tavares, J. M. R. S., Jorge, R. N., and Mascarenhas, T., “A review of algorithms for medical image segmentation and their applications to the female pelvic cavity,” Computer Methods in Biomechanics and Biomedical Engineering, Vol. 13, No. 2, pp. 235-246, 2010.
    [3] Phipps, L. M., Raymond, J. A., and Angeletti, T. M., “Congenital tracheal stenosis,” Critical Care Nurse, Vol. 26, No. 3, pp. 60-69, 2006.
    [4] Ma, B., Ge, Y. H., Shi, D. P., and Guo, Y., “Application value of MSCT coronal scan and post-processing techniques to foreign body in trachea and bronchus of children,” Chinese Journal of Medical Imaging Technology, Vol. 24, No. 9, pp. 1421-1423, 2008.
    [5] Antón-Pacheco, J. L., Kaliciński, P., Kansy, A., and Maruszewski, P., “Slide tracheoplasty in an infant with congenital tracheal ste-nosis and oesophageal atresia with tracheoesophageal fistula,” European Journal of Cardio-thoracic Surgery, Vol. 42, No. 5, pp. 892-893, 2012.
    [6] Maeda, K., Ono, S., Tazuke, Y., and Baba, K., “Long-term out-comes of congenital tracheal stenosis treated by metallic airway stenting,” Journal of Pediatric Surgery, Vol. 48, No. 2, pp. 293-296, 2013.
    [7] Lawton, B., and Gungor, A., “Airway salvation after failed ante-rior graft in a child with long segment stenosis,” American Journal of Otolaryngology - Head and Neck Medicine and Surgery, Vol. 34, No. 5, pp. 606-607, 2013.
    [8] Cotton, R. T., “Pediatric laryngotracheal stenosis,” Journal of Pediatric Surgery, Vol. 19, No. 6, pp. 699-704, 1984.
    [9] Gustafson, L. M., Hartley, B. E., Cotton, R. T., “Acquired total (grade 4) subglottic stenosis in children,” Ann Otol Rhinol Lar-yngol, Vol. 110, No. 1, pp. 16-19, 2001.
    [10] DaCruz, D. J., Taylor, R. H., Savage, B., and Bodiwala, G. G., “Ultrasound assessment of the suspected scaphoid fracture,” Ar-chives of Emergency Medicine, Vol. 5, No. 2, pp. 97-100, 1988.
    [11] Goulding, A., Jones, I. E., Taylor, R. W., Williams, S. M., and Manning, P. J., “Bone mineral density and body composition in boys with distal forearm fractures: A dual-energy x-ray absorp-tiometry study,” Journal of Pediatrics, Vol. 139, No. 4, pp. 509-515, 2001.
    [12] Lu, D. S. K., Reber, H. A., Krasny, R. M., Kadell, B. M., and Sayre, J., “Local staging of pancreatic cancer: Criteria for unre-sectability of major vessels as revealed by pancreatic-phase, thin-section helical CT,” American Journal of Roentgenology, Vol. 168, No. 6, pp. 1439-1443, 1997.
    [13] Mattes, D., Haynor, D. R., Vesselle, H., Lewellen, T. K., and Eu-bank, W., “PET-CT image registration in the chest using free-form deformations,” IEEE Transactions on Medical Imaging, Vol. 22, No. 1, pp. 120-128, 2003.
    [14] Dzikn-Jurasz, A., Domenig, C., George, M., Wolber, J., Padhani, A., Brown, G., and Doran, S., “Diffusion MRI for prediction of response of rectal cancer to chemoradiation,” the Lancet, Vol. 360, No. 9329, pp. 307-308, 2002.
    [15] Rajaei, A., Lalitha, R., and Dallalzadeh, E., “Medical Image Tex-ture Segmentation Usingrange Filter,” Computer Science and In-formation Technology, Vol. 2, No. 1, pp. 273-280, 2012.
    [16] Zeng, H., Liu, Y. Z., Fan, Y. M., and Tang, X., “An Improved Algorithm for Impulse Noise by Median Filter,” AASRI Procedia, Vol. 1, pp. 68-73, 2012.
    [17] Hsieh, M. H., Cheng, F. C., Shie, M. C., and Ruan, S. J., “Fast and efficient median filter for removing 1-99% levels of salt-and-pepper noise in images,” Engineering Applications of Artificial Intelligence, Vol. 26, No. 4, pp. 1333-1338, 2013.
    [18] Zhang, J., “An efficient median filter based method for removing random-valued impulse noise,” Digital Signal Processing: A Re-view Journal Vol. 20, No. 4, pp. 1010-1018, 2010.
    [19] Hwang, H., and Haddad, R. A., “Adaptive median filters: new algorithms and results,” IEEE Transactions on Image Processing, Vol. 4, No. 4, pp. 499-502, 1995.
    [20] Nair, M. S., and Ameera-Mol, P. M., “Direction based adaptive weighted switching median filter for removing high density im-pulse noise,” Computers and Electrical Engineering, Vol. 39, No. 2, pp. 663-689, 2013.
    [21] Lu, C. T., and Chou, T. C., “Denoising of salt-and-pepper noise corrupted image using modified directional-weighted-median fil-ter,” Pattern Recognition Letters, Vol. 33, No. 10, pp. 1287-1295, 2012.
    [22] Bao, P., and Zhang, L., “Noise Reduction for Magnetic Resonance Images via Adaptive Multiscale Products Thresholding,” IEEE Transactions on Medical Imaging, Vol. 22, No. 9, pp. 1089-1099, 2003.
    [23] Srinivasan, K. S., and Ebenezer, D., “A new fast and efficient de-cision-based algorithm for removal of high-density impulse nois-es,” IEEE Signal Processing Letters, Vol. 14, No. 3, pp. 189-192, 2007.
    [24] Mélange, T., Nachtegael, M., Schulte, S., and Kerre, E. E., “A fuzzy filter for the removal of random impulse noise in image sequences,” Image and Vision Computing, Vol. 29, No. 6, pp. 407-419, 2011.
    [25] Horng, S. J., Hsu, L. Y., Li, T., Qiao, S., Gong, X., Chou, H. H., and Khan, M. K., “Using sorted switching median filter to remove high-density impulse noises,” Journal of Visual Communication and Image Representation, Vol. 24, No. 7, pp. 956-967, 2013.
    [26] Weibel E. R., “Morphometry of the Human Lung,” Spring-er-Verlag, Berlin, 1983.
    [27] Kitaoka, H., Takaki, R., and Suki, B., “A three-dimensional model of the human airway tree,” Journal of Applied Physiology, Vol. 87, No. 6, pp. 2207-2217, 1999.
    [28] Schwab, R. J., Pasirstein, M., Pierson, R., Mackley, A., Hacha-doorian, R., Arens, R., Maislin, G., and Pack, A. I., “Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging,” American Journal of Respiratory and Critical Care Medicine, Vol. 168, No. 5, pp. 522-530, 2003.
    [29] Aykac, D., Huffman, E. A., McLennan, G., and Reinhardt, J. M., “Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images,” IEEE Transactions on Medical Imaging, Vol. 22, No. 8, pp. 940-950, 2003.
    [30] Osher, S., and Sethian, J. A., “Fronts propagating with curva-ture-dependent speed: Algorithms based on Hamilton-Jacobi formulations,” Journal of Computational Physics, Vol. 79, No. 1, pp. 12-49, 1988.
    [31] Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., and Yezzi, A., “Gradient flows and geometric active contour models,” Proceedings of the 5th International Conference on Computer Vi-sion, pp. 810-815, Cambridge, MA, USA, 1995.
    [32] Chan, T. F., and Vese, L. A., “Active contours without edges,” IEEE Transactions on Image Processing, Vol. 10, No. 2, pp. 266-277, 2001.
    [33] Li, C., Kao, C. Y., Gore, J. C., and Ding, Z., “Minimization of re-gion-scalable fitting energy for image segmentation,” IEEE Transactions on Image Processing, Vol. 17, No. 10, pp. 1940-1949, 2008.
    [34] Li, C., Xu, C., Gui, C., and Fox, M. D., “Distance regularized level set evolution and its application to image segmentation,” IEEE Transactions on Image Processing, Vol. 19, No. 12, pp. 3243-3254, 2010.
    [35] http://www.naturalhealthschool.com/bronchi_trachea.html
    [36] http://www.studyblue.com/notes/note/n/ap-3/deck/4393365
    [37] http://www.studyblue.com/notes/note/n/respiratory-system-/deck/6304082
    [38] Herrera, P., Caldarone, C., Forte, V., Campisi P., Holtby H., Chait P., Chiu P., Cox P., Yoo S. J., Manson, D., and Kim, P. C. W., “The current state of congenital tracheal stenosis,” Pediatric Surgery International, Vol. 23, No. 11, pp. 1033-1044, 2007.
    [39] Gonzalez, R. C., and Woods, R. E., “Digital Image Processing, 3rd edition,” Prentice-Hall, New York, 2008.
    [40] Ioannis, P., and Venetsanopoulos, A.N., “Order statistics in digital image processing,” Proceedings of the IEEE, Vol. 80, No. 12, pp. 1893-1921, 1992.
    [41] Kass, M., Witkin, A., and Terzopoulos, D., “Snakes: Active con-tour models,” International Journal of Computer Vision, Vol. 1, No. 4, pp. 321-331, 1988.
    [42] Sussman, M., Smereka, P., and Osher, S., “A level set approach for computing solutions to incompressible two-phase flow,” Journal of Computational Physics, Vol. 114, No. 1, pp. 146-159, 1994.
    [43] Adams, R., and Bischof, L., “Seeded region growing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 6, pp. 641-647, 1994.
    [44] Lorensen, W. E., and Cline, H. E., “Marching Cubes: a High Res-olution 3D Surface Construction Algorithm,” Computer Graphics (ACM), Vol. 21, No.4, pp. 163-169, 1987.
    [45] 繆紹綱等,數位影像處理活用MATLAB,全華圖書股份有限公司,(2010)。
    [46] 鄒錦聰等,MATLAB程式設計,全華科技圖書股份有限公司,(2003)。
    [47] 連國珍等,數位影像處理MATLAB,儒林圖書有限公司,(2009)。
    [48] S. Carsten, U. Markus, and W. Christian, 機器視覺演算法與應用,新亞洲儀器股份有限公司,(2011)。
    [49] 鍾國亮,影像處理與電腦視覺(第四版),東華書局,(2008)。
    [50] 簡村誠,”口腔磁振影像舌頭構造之自動分割”,國立中央大學,電機工程研究所,碩士論文,(2009)。
    [51] 范振添,“醫療影像傳輸及資料探索之系統開發”,中原大學,醫學工程學研究所,碩士論文,(2002)。

    無法下載圖示 全文公開日期 2019/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE