簡易檢索 / 詳目顯示

研究生: 施秉宏
Ping-Hung Shih
論文名稱: 應用因式圖模型於無線通訊之資源分配最佳化分析
The Factor Graph Approach for Resource Assignment Optimization in Wireless Communications
指導教授: 方文賢
Wen-Hsien Fang
口試委員: 曾德峰
Der-Feng Tseng
陳郁堂
Yie-Tarng Chen
賴坤財
Kuen-Tsair Lay
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 61
中文關鍵詞: 因式圖和積演算法最大乘積演算法天線選定超寬頻資源分配
外文關鍵詞: Factor Graph, Sum-Product Algorithm, Max-Product algorithm, Antenna assignment, MB-OFDM UWB, Resoruce allocatioin/assignment
相關次數: 點閱:208下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文中,我們基於因式圖模型搭配了和積演算法、最大乘積演算法來建立低複雜度、高通道容量及高傳輸率的資源分配演算法
發展出適用於MIMO系統接收端天線選擇、MIMO系統使用者天線選定以及天使用者子頻段分配等資源分配問題。

對於MIMO多使用者傳送端天線選定問題中我們利用因式圖模型以及搭配最大乘積演算法,提出相對於Hungarian演算法較快速的多使用者傳送端天線選定演算法。
並且考慮當使用者人數K>M的情況下,我們利用已知的通道資訊以及每位使用者與傳輸天線之間的關係建立因式圖模型。以及利用最大乘積演算法作為
軟式資訊交換的核心運算。如此一來,不但大幅的減少了不必要的加法或乘法運算量而且可以對於每個使用者與每根傳送天線之間能有更週全的考量。

另外,對於正交分頻多工超寬頻無線通訊系統中多使用者子頻段的分配問題,我們利用因式圖模型搭配加權和積演算法來對於Greedy演算法提出
能分配出較高整體平均傳輸率的使用者子頻段分配演算法。我們使用軟式資訊及以使用者所要求的傳輸率為基礎,於使用者因式點(Agent node)上
使用了對於軟式資訊加權的權重,因此有助於對所有使用者與子頻段之間能做更細部的調整。

最後,經由實驗結果可以發現我們所提出的天線選定演算法可以比Hungarian演算法擁有更高的通道容量以及較少的計算時間(約30%)。
更進一步,我們同時考慮並整合公平性與天線選定演算法後仍可以比傳統的Hungarian演算法與公平性演算法分開處理的作法,同樣有較高的通道容量
以及較少的運算時間。我們所提出的子頻段分配演算法與Greedy演算法比較之下,我們所提出的多使用者子頻段分配演算法的確可以將整體平均傳輸速率提昇30Mbps
之多。


In the thesis, we make use of the factor graph to develop some low complexity, yet high resource algorithm for resofurce allocation problems in wireless communications.
First, we develop two new algorithms based on the factor graph model along with max-product algorithm.
We use the original channel state information as our soft information, and then use the max-product algorithm to exchange the soft-information in between.
The algorithms considered collect and pass the maximum soft information to the desire variable node without extra computations,
thus calling for lower complexity than the existing approach such as the Hungarian algorithms.

Second, we consider the sub-band allocation problem in MB-OFDM UWB systems.
For the new factor graph based approach along with the sum-product algorithm is addressed.
By passing the soft information among the variable nodes and the agent nodes, An ingeneous choice of the weights are also imposed in the soft
information exchange process to enhance the possbility of choosing appropriate subbands.

Conducted simulations show that our proposed multi-user antenna assignment algorithm can attain higher channel capacity with lower computational
time compared with previous works.
Likewize the new multi-user MB-OFDM chanel allocation algorithm can reach the higher average transmission rate than the classical Greedy algorithm.

第一章緒論1 1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 本文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 第二章論文背景7 2.1 多輸入多輸出無線通訊系統. . . . . . . . . . . . . . . . . . . . . 7 2.1.1 通道環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 使用者天線選定演算法與公平分配演算法. . . . . . . . . 10 2.2 正交分頻多工超寬頻無線通訊系統. . . . . . . . . . . . . . . . . 14 2.2.1 通道環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 使用者與子頻段與配置演算法. . . . . . . . . . . . . . . . 19 2.3 結語. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 第三章因式圖模型與相關演算法22 3.1 和積演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 最大乘積演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 因式圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 結語. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 第四章 因式圖模型的應用與實驗結果討論 30 4.1 天線指定演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 子頻段分配演算法. . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3 實驗結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4 結語. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 第五章 結論與未來展望 55 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56 5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 參考文獻 57

[1] J. G. Proakis, Digital Communications, McGraw-Hill, New York. 2001.
[2] T. S. Rappaport, Wireless Communications Principles and Practice, Prentice
Hall, 2002.
[3] S. Sanayei, and A. Nosratinia, “Capacity of MIMO channels with antenna
selection.” IEEE Trans. Inform. Theory, vol. 53, no. 11, Nov. 2007.
[4] S. Sanayei, and A. Nosratinia, “Antenna selection in MIMO systems,” IEEE
Commun. Mag., vol. 42, no. 10, pp. 68-73, Oct. 2004.
[5] M. Z. Win and J. H. Winters, “Analysis of hyberd selection/maximal radio
combining in Rayleigh fading,” IEEE Trans. Commun., vol. 47, pp. 1773-
1776, Dec. 1999.
[6] R. Heath and A. Paulraj, “Antenna selection for spatial multiplexing systems
based on minimum error rate,” in Proc. Int. Conf. Commun., Helsinki,
Finland, pp. 2276-2280, Jun. 2003.
57
[7] D. Gore, R. U. Nabar, and A. Paulraj, “Selecting an optimal set of transmit
antennas for a low rank matrix channel,” in Proc. IEEE ICASSP, Istanbul,
Turkey, May. 2000. pp. 2785-2788.
[8] P. Lan, J. Liu, B. Gu, and h. Xu, “Fast antenna subset selection algorithm
for MIMO wireless systems.” in 2006 International Conference on Wireless
Communications, Networking and Mobile Computing, WiCOM 2006, art. no.
4149194, pp.1-4, Sept. 22-24. 2006.
[9] Federal Communications Commission Report FCC 98-153, “Revision of Part
15 fo the Commission’s Rules Regarding Ultra-Wideband Transmission Systems,
First REport and Order,” Feb. 14, 2002.
[10] A. A. M. Saleh and R. A. Valenzuela “A statistical model for indoor multipath
propagation,” IEEE J. Sel. Areas Commun., vol. 5, no. 2, pp.128-137, Feb.
1987.
[11] A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Forester and A. Dabak “Design
of a multiband ofdm system for realistic uwb channel environments,” IEEE
Trans. Microw. Theory Tech., vol. 52, no. 9, pp. 2123-2138, Sept. 2004.
[12] Y. J. Choi, J. Kim and S. Bahk “Downlink scheduling with fairness and
optimal antenna assignment for mimo cellular systems,” in IEEE Commun,.
pp. 3165-3169, New Orleans, US, Sep. 2004.
[13] J. Forester, et al.,Channel Modeling Sub-committee Report Final, IEEE802.15-
02/490, Nov. 2003.
58
[14] A. F. Molisch, J. R. Forester and M. Pendergrass, “Channel models for ultrawideband
personal area networks,” IEEE Wireless Commun., vol. 10, no. 6,
pp. 14-21, Dec. 2003.
[15] W. P. Siriwongpairat, Z. Han, and K. J. R. Liu, “Energy-efficient channel
allocation for multiuser multiband UWB system,” in Proc. IEEE Wireless
Commun. and Networking Conf., pp. 813-818. 2005.
[16] W. P. Siriwongpairat, Z. Han, and K. J. R. Liu, “Power Controlled Channel
Allocation for Multiuser Multiband UWB Systems,” in Trans. IEEE Wireless
Commun., vol. 6, no. 2, Feb. 2007.
[17] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. New York:
Springer, 2004.
[18] R. G. Gallager,Low-Density Parity-Check Codes. Cambridge, MA:MIT Press,
1963.
[19] R. M. Tanner,“A recursive approach to low complexity codes” IEEE Trans.
Inform. Theory, vol. 27, pp. 533-547, Sept. 1981.
[20] B. J. Frey, F. R. Kschischang, H. A. Loeliger, and N. Wiberg,“Factor graphs
and algorithms” Proc. 35th Allerton Conf. Communications, Control, and
Computing, Allerton House, Monticello, IL, Sept. 29-Oct. 1, pp. 666-680,
1997.
[21] G. D. Forney, Jr.,“Codes on graphs: Normal realizations” IEEE Trans. Inform.
Theory, vol. 47, no. 2, pp. 520-548, 2001.
59
[22] H.-A. Loeliger,“An introduction to factor graphs” IEEE Signal Processing
Magazine. vol. 21, pp. 28-41, Jan. 2004.
[23] Y. N. Lee, J. C. Chen, Y. C. Wang, and J. T. Chen, “A Novel Distributed
Scheduling Algorithm for Downlink Relay Networks” IEEE Trans. Wireless
Comm., vol. 6, no. 6, pp. 1985-1991, June. 2007.
[24] G. J. Foschini, “Layered space-time architecture for wireless communication
in a fading environment when using multi-element antennas,” Bell Labs Technical
Journal, Aug. 1996.
[25] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,”
IEEE Journal on Selected Areas in Communications, vol. 16, no.
8, pp. 1451-1458, Oct. 1998.
[26] B. A. Bjerke and J.G. Proakis, “Multiple-antenna diversity techniques for
transmission over fading channels,” in Proc. IEEE Wireless Communications
and Networking Conference(WCNC), pp. 1038-1042, New Orleans, US, Sep.
1999.
[27] Y. J. Choi, J. Kim and S. Bahk,“Downlink scheduling with fairness and optimal
antenna assignment for mimo cellular systems,” in IEEE Commun., pp.
3165-3169, New Orleans, US, Sep. 2004.
[28] K. K. Wong, R.D. Murch and K. B. Letaief, “Performance enhancement of
mulitiuser MIMO wireless communication systems,” IEEE Trans. on Commun.,
vol. 50, no. 12, pp. 1960-1970, Dec. 2002.
60
[29] D.West, Introduction to graph theory, 3.2.11 and 3.2.12, Prentice Hall, Second
edition, 2001.
[30] H. Kuhn, “The Hungarian method for the assignment problem,” Naval Research
Logistics Quarterly 2, pp. 83-97, 1955. pp. 3165-3169, New Orleans,
US, Sep. 2004.
[31] L. Zheng and D. N. C. Tse,“Diverstiy and multiplexing: a fundamental tradeoff
inmultiple-antenna channels,” IEEE Trans. on Information Theory, vol.
49, no 5, pp. 103-1096, May. 2003.
[32] J. Munkres,“Algorithms for the assignment and transportation problems,” J.
Soc. Indust. Appl. Math. 5, p.32-38, 1957.
[33] A. Paulraj, R. Nabar,and D. Gore, Intorduction to Space-Time Wireless Communications,
Cambridge University Press, 2003.
61

QR CODE