簡易檢索 / 詳目顯示

研究生: 張皓威
HAO-WEI ZHANG
論文名稱: 常壓電漿於含黃金溶液之固體金屬還原製程之研究
Development of atmospheric pressure plasma for the valuable metal recovery process of Gold-containing solution
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 曾堯宣
Yao-Hsuan Tseng
王儀雯
Yi-Wen Wang
黃駿
Chun-Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 178
中文關鍵詞: 常壓輝光放電電漿電解綠色製程技術產業剝金溶液含金 離子溶液常壓電漿噴射束
外文關鍵詞: Atmospheric pressure glow discharge plasma, green processing, Gold-containing Solution, industrial gold solution, Atmospheric pressure Plasma Jet
相關次數: 點閱:337下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以常壓輝光放電電漿電解技術(APGDE),建立綠色製程回收技術,收先評估常壓輝光放電電漿電解技術之不同電極配置系統(Plasma Anode、Plasma Cathode)產生電漿物種,並光學發射光譜儀確認電漿物種,後續進行反應槽溶液進行分析評估,包含了:酸鹼值、臨場過氧化氫濃度、硝酸根離子濃度,最後實際應用於低濃度(20 ppm)四氯金酸三水合物於分別於不同電極配置電漿電解處理,經由ICP-OES降解濃度分析,由操作時間五分鐘結果可以獲得Plasma Anode系統降解效率(99.4%)高於Plasma Cathode系統降解效率(27.0%),並經由UV-VIS、TEM、XRD,進行電解回收金屬之材料微觀分析確認,奠定綠色製程回收機制,後續以APGDE系統操作於反應槽內進行金屬離子溶液之製程參數最佳化,分別探討高濃度(600 ppm)含金離子溶液於不同電流參數下,金屬離子溶液濃度、氯離子濃度變化、pH值變化,奠定不同電流參數下金屬回收產率之電流參數優化評估,藉由感應耦合電漿放射光譜儀(ICP-OES)分析,16mA電流參數效率最佳,操作時間1小時回收率可達95.8%,然而通過電解過發現溶液酸化導致回收效率下降,故後續將APGDE系統實際應用於產業,對於前驅物 "(" 產業剝金液與含金離子溶液)溶液進行酸鹼調值,各別以pH4、pH7、pH11反應槽前驅物濃度為(600ppm)進行常壓輝光放電電漿電解系統處理並進行溶液與材料分析,由ICP-OES結果顯示經過前驅物調質處理,時間為15分鐘回收率為99%接近完全回收之狀態,後續利用反應速率常數運算結果,驗證在鹼性前驅物條件之下,回收效率最佳,呼應ICP-OES分析之結果,同時APGDE系統也超越法拉第定律所預估之回收產量。在材料微觀分析方面,通過SEM顯現出在鹼性前驅物件之下,形成金之金顆粒之粒徑較小,顯示通過前驅物之改質可調控金屬顆粒回收形式,除了能提供於回收產業製程之應用之外,更可以開發功能性奈米材料。綜合前面實驗結果,顯示出常壓輝光放電電漿電解系統之高效率、低汙染、商用潛力等優勢。
最後經多次與產業商討後,最終期望能達到完全乾濕分離,完全無二次廢液之問題以常壓電漿噴射束(Atmospheric Pressure Plasma Jet) 嘗試進行含金離子溶液(產業剝金液之回收處理,並驗證常壓電漿束確實具回收金金屬顆粒能力,並利用掃描式電子顯微鏡(SEM)分析經製程所回收之金屬組成結晶結構與表面形貌與XRD結果可接近純金屬結果且無任何雜訊生成,達到完全乾濕分離之回收方式,完全無二次廢液產生,未來更朝向應用於中低溫固態氧化物燃料電池之電極材料開發。

關鍵字:常壓輝光放電電漿電解、綠色製程技術、產業剝金溶液、含金離子溶液、常壓電漿噴射束


The study uses atmospheric pressure glow discharge plasma electrolysis technology (APGDE) to establish a green process recovery technology. First, the different electrode configuration systems of atmospheric pressure glow discharge plasma electrolysis technology were evaluated to generate plasma species. Using an Optical emission spectrometer, the plasma species were confirmed, and then analyzed & evaluated the reaction tank solution, including pH value, on-site hydrogen peroxide concentration, nitrate ion concentration. Finally, low concentration (20 ppm) Gold(III) chloride hydrate is treated with plasma electrolysis on different electrodes. The five-minute operation time degradation concentration analysis of ICP-OES shown that the degradation efficiency of the Plasma Anode system (99.4%) was higher than the degradation efficiency of the Plasma Cathode system (27.0%). Through UV-VIS, TEM, XRD, materials analysis, and confirmation of the electrolytic metal recovery material was carried out, and established a green process recovery mechanism, using the APGDE system to operate in the reaction tank and to optimize the process parameters of the metal ion solution. To discuss the high concentration. (600 ppm) Gold ion solution under different current parameters, such as metal ion solution concentration, chloride ion concentration change, pH value change, the current parameter optimization evaluation of metal recovery yield under different current parameters was established. The inductively coupled plasma emission spectrometer (ICP-OES) analysis showed that the 16mA current parameter efficiency was the best, and the recovery rate could reach 95.8% after 1 hour of operation. However, the acidification of the solution through electrolysis has led to a decrease in recovery efficiency. Therefore, the APGDE system will be applied to the industry in the future to avoid such a problem. The "Precursor" ("Industrial gold stripping solution and gold ion-containing solution) solution was adjusted for the acid-base value of pH4, pH7, and pH11 reaction tank (600ppm) for atmospheric pressure glow discharge plasma electrolysis system treatment. From the analysis of solution and materials, the results of ICP-OES shown that after the precursor conditioning treatment, a 99% recovery rate (which was close to the state of complete recovery) was achieved in 15 minute recovery time. The subsequent calculation results of the reaction rate constant were combined to verify the condition of the alkaline precursor. The recovery efficiency which corresponds to the results of ICP-OES analysis was found the best. At the same time, the APGDE system also exceeded the recovery output estimated by Faraday’s law. In terms of material microanalysis, The SEM results show that the size of the gold particles forming the gold was small in the solution under the alkaline precursor objects, ascribing the modification of the precursor can control the metal particle recovery form. In addition to the application of recycling industry processes, functional nanomaterials can also be developed. Based on the experimental results found, the advantages of high efficiency, low pollution, and commercial potential of the atmospheric pressure glow discharge plasma electrolysis system is apparent. Atmospheric Pressure Plasma Jet is used to spray high-concentration normal-pressure plasma beam and to recover gold ion-containing solution (recycling process of industrial gold stripping solution). It also discusses and verifies that the high-concentration constant pressure plasma beam could have the ability to recover gold metal particles. A scanning electron microscope (SEM) used to analyze the metal composition and surface morphology recovered by the manufacturing process. The XRD results were expected to achieve pure metal results without any impurity generation, and it was possible to achieve a completely dry and wet separation recovery method, and no secondary waste liquid was generated. Moreover, this method could be used in the development of electrode materials for medium and low-temperature solid oxide fuel cells.

Keyword:Atmospheric pressure glow discharge plasma, green processing, Gold-containing Solution, industrial gold solution, Atmospheric pressure Plasma Jet.

摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章、緒論 1.1前言 1.2研究目的與動機 第二章、文獻回顧 2.1電子產業廢棄物 2.1.1城市礦產與循環經濟 2.1.2國內外產業發展現況 2.2傳統貴金屬回收方法 2.3.1含金回收處理製程 2.3.3含金液態廢料回收處理製程 2.4電漿之基本介紹 2.4.1電漿原理與反應機制 2.5常壓大氣微電漿技術介紹與應用 2.5.1常壓大氣液相微電漿歷史 2.5.2常壓大氣液相微電漿之產生方式 2.5.3直接接觸式液相電漿系統(Direct contact plasma-liquid systems) 2.5.4間接接觸液相電漿系統(Indirect contact plasma-liquid systems) 2.5.5電漿誘導液相基礎化學反應 2.6常壓大氣輝光放電電漿電解技術APGDE 2.6.1非接觸式輝光放電技術GDE 2.6.2接觸式輝光放電電解 CGDE 2.6.3離子液體輝光放電電解技術 2.7常壓液相微電漿與液相電解質界面相互作用 2.7.1化學反應於電漿與液相電解質界面區域 2.7.2常壓大氣液相微電漿與電解液界面相互作用合成奈米顆粒之電化學機制 2.7.3常壓大氣液相微電漿之奈米顆粒合成 2.7.4貴金屬與奈米材料 2.8常壓大氣液相電漿於電解水化學反應 2.8.1常壓大氣液相微電漿於液相電解質產生反應物種 2.8.2過氧化氫對於合成反應與環境之重要性 2.8.3常壓大氣液相微電漿於廢水於環境處理 2.9常壓大氣電漿技術回收技術 2.9.1金屬標準還原電位與酸鹼值 2.9.2常壓輝光放電電漿電解回收技術 2.9.3常壓大氣電漿噴射束回收技術 第三章、實驗設備與程序 3.1實驗流程與參數 3.1.1常壓輝光放電電漿電解系統 3.1.2常壓大氣電漿噴射束 3.2實驗藥品 3.3電漿實驗濃度調配所需之實驗器皿 3.4濃度調配與標定及滴定 3.5實驗設備與分析儀器 第四章、結果與討論 4.1.1 APGDE技術之電極配置系統與操作環境 4.1.2 APGDE常壓輝光放電電漿電解技術於液相界面之電漿物種分析 4.2評估APGDE系統之不同電極配置系統於不同電流參數於密閉式操作環境之OES與特性之分析 4.2.1 APGDE技術於Plasma-Anode系統配置不同電流參數於密閉式操作環境之OES結果分析 4.2.2 APGDE技術於Plasma-Cathode系統配置不同電流參數於密閉式操作環境之OES結果分析 4.2.3 APGDE之電極配置系統於不同電流參數於密閉式操作環境之特性分析 4.2.4 APGDE技術於Plasma-Anode系統配置不同電流參數於密閉式操作環境之特性之分析 4.2.5 APGDE技術於Plasma-Cathode系統配置不同電流參數於密閉式操作環境之特性之分析 4.2.6 APGDE技術之不同電極配置系統於密閉操作環境臭之氧含量分析 4.3評估常壓輝光放電電漿電解技術於電極配置系統之低濃度含金離子回收 4.3.1低濃度含金離子溶液經APGDE不同電極配置系統處理ICP-OES濃度分析 4.3.2低濃度含金離子溶液經APGDE不同電極配置還原金奈米顆粒UV-VIS分析 4.3.3低濃度含金離子溶液經APGDE不同電極配置系統還原金奈米顆粒TEM、XRD分析 4.4 APGDE系統電極配置最佳化與回收機制建立 4.5評估常壓輝光放電電漿電解技於之高濃度含金離子回收 4.5.1評估高濃度含金離子溶液經不同電流參數之特性分析 4.5.2評估高濃度含金離子溶液經APGDE系統還原金之金屬SEM、EDS、XRD分析 4.6常壓輝光放電電漿電解技於之調值高濃度含金離子回收 4.6.1高濃度含金離子溶液經APGDE系統於不同pH值操作條件之特性分析 4.6.2高濃度含金離子溶液經APGDE系統於不同pH值操作條件經APGDE系統還原金之金屬SEM、 EDS、 XRD 分析 4-7 實際產業應用:APGDE系統處理調值後產業界剝金溶液 4.7.1業界剝金溶液經APGDE系統於不同pH值操作條件之特性分析 4.7.2業界剝金溶液經APGDE系統於不同pH值操作條件經APGDE系統還原金之金屬SEM、EDS、XRD 分析 4-8 高濃度金屬離子溶液反應速率常數分析 4-9 實際產業應用:APPJ技術處理金屬回收產業界剝金溶液 第五章、結論與未來展望 5.1 結論 5.2未來展望 第六章、參考文獻 附件

[1] N.Bateson, M. C.Bateson, U.Heise, “The Convention at a Glance,” New York, pp. 00–10, 2010.
[2] C. P.Balde, V.Forti, V.Gray, R.Kuehr, P.Stegmann, The global e-waste monitor 2017.
[3] 綠基會通訊,“金、鈀.貴金屬回收技術.”,2005.
[4] 財團法人中技社,“循環經濟系列叢書: 第三冊 資源及產品 循環應用技術.”,2016.
[5] 劉維平,馬振基, “積體電路晶片之環保黃金提取技術研究.”
[6] 馬小康,許景翔, “電子廢棄物貴金屬回收再利用之綠循環經濟產業.”p. 35,2018
[7] 王建凱,邱亦慶,何享穎,郭裕杰,許景翔, “積體電路晶片之環保黃金提取技術研究.”
[8] 連翊鈞, “液中求銅-製程廢硫酸銅回收裝置應用.”
[9] 李九龍,曾國輝,呂承恩, “鎳廢液處理與回收之研究.”p.7-14,2008.
[10] 劉冠廷,「電漿熔渣中有價金屬資源回收之研究,大葉大學環境工程學系,碩士論文,2010.
[11] LIEBERMAN, Michael A.; LICHTENBERG, Alan J. “Principles of plasma discharges and materials processing,” John Wiley & Sons, 2005.
[12] K. K.Ostrikov, “Plasma-Aided Nanofabrication,” p.316, 2007.
[13] B. H.Yan, Q.Wang, Y.Jin, Y.Cheng, “Dry reforming of methane with carbon dioxide using pulsed DC arc plasma at atmospheric pressure,” Plasma Chem. Plasma Process, vol. 30, no. 2, pp. 257–266, 2010.
[14] R.Snoeckx, A.Bogaerts, “Plasma technology-a novel solution for CO2 conversion,” Chem. Soc. Rev, vol. 46, no. 19, pp. 5805–5863, 2017.
[15] H.H.Kim, aOgata, S.Futamura,“Complete Oxidation of Volatile Organic Compounds (VOCs) Using Plasma-Driven Catalytic and Oxygen Plasma,” Plasma Environ. Sci. Technol, vol. 1, no. 1, pp. 46–51, 2007.
[16] S.Bhaviripudi, “CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts, ” J. Am. Chem. Soc, vol. 129, no. 6, pp. 1516–1517, 2007.
[17] N. H. Alshraiedeh, M. Y.Alkawareek, S. P.Gorman, W. G.Graham, B. F.Gilmore, “Atmospheric pressure, nonthermal plasma inactivation of MS2 bacteriophage: Effect of oxygen concentration on virucidal activity,” J. Appl. Microbiol, vol. 115, no. 6, pp. 1420–1426, 2013.
[18] B.Surowsky, O.Schlüter, D.Knorr, “Interactions of Non-Thermal Atmospheric Pressure Plasma with Solid and Liquid Food Systems: A Review,” Food Eng. Rev, vol. 7, no. 2, pp. 82–108, 2015.
[19] B.Eliasson U.Kogelschatz, “Nonequilibrium Volume Plasma Chemical Processing,” IEEE Trans. Plasma Sci, vol. 19, no. 6, pp. 1063–1077, 1991.
[20] T.Belmonte, G.Arnoult, G.Henrion, T.Gries, “Nanoscience with non-equilibrium plasmas at atmospheric pressure,” J. Phys. D. Appl. Phys, vol. 44, no. 36, 2011.
[21] K. H.Schoenbach K.Becker, “20 years of microplasma research: A status report Topical Issue: Recent Breakthroughs in Microplasma Science and Technology Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu,” Eur. Phys. J. D, vol. 70, no. 2, 2016.
[22] 林怡君,「以常壓電漿噴射束沉積銀-氧化鈰複合陰極材料應用於中低溫固態氧化物, 國立台灣科技大學機械工程系,碩士論文,2017.
[23] M.Moselhy, R. H.Stark, K. H.Schoenbach, U.Kogelschatz, “Resonant energy transfer from argon dimers to atomic oxygen in microhollow cathode discharges,” Appl. Phys. Lett, vol. 78, no. 7, pp. 880–882, 2001.
[24] A.El-Habachi, K. H.Schoenbach, “Generation of intense excimer radiation from high-pressure hollow cathode discharges,” Appl. Phys. Lett, vol. 73, no. 7, pp. 885–887, 1998.
[25] A.El-Habachi, W.Shi, M.Moselhy, R. H.Stark, K. H.Schoenbach, “Series operation of direct current xenon chloride excimer sources,” J. Appl. Phys, vol. 88, no. 6, pp. 3220–3224, 2000.
[26] P. J.Bruggeman , “Plasma-liquid interactions: A review and roadmap,” Plasma Sources Sci. Technol, vol. 25, no. 5, 2016.
[27] M.Nishimoto, S.Abe, T.Yonezawa, “Preparation of Ag nanoparticles using hydrogen peroxide as a reducing agent,” New J. Chem, vol. 42, no. 17, pp. 14492–14501, 2018.
[28] L.Lin, Q.Wang, “Microplasma: A New Generation of Technology for Functional Nanomaterial Synthesis,” Plasma Chem. Plasma Process., vol. 35, no. 6, pp. 925–962, 2015.
[29] P.Rumbach, D. B.Go, “Perspectives on Plasmas in Contact with Liquids for Chemical Processing and Materials Synthesis,” Top. Catal., vol. 60, no. 12–14, pp. 799–811, 2017.
[30] E. C.Neyts, A. C. T.VanDuin, A.Bogaerts, “Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations: Effect of electric field,” J. Am. Chem. Soc., vol. 134, no. 2, pp. 1256–1260, 2012.
[31] F.Rezaei, P.Vanraes, A.Nikiforov, R.Morent, N.DeGeyter, “Applications of Plasma-Liquid Systems : A Review,” 2019.
[32] S.Horikoshi, N.Serpone, “In-liquid plasma: A novel tool in the fabrication of nanomaterials and in the treatment of wastewaters,” RSC Adv., vol. 7, no. 75, pp. 47196–47218, 2017.
[33] P.Bruggeman, C.Leys, “Non-thermal plasmas in and in contact with liquids,” J. Phys. D. Appl. Phys., vol. 42, no. 5, 2009.
[34] D.Mariotti, R. M.Sankaran, “Microplasmas for nanomaterials synthesis,” J. Phys. D. Appl. Phys., vol. 43, no. 32, 2010.
[35] L.Lin, S. A.Starostin, S.Li, V.Hessel, “Synthesis of metallic nanoparticles by microplasma,” Phys. Sci. Rev., vol. 3, no. 10, 2019.
[36] H.Lee, S. H.Park, S. J.Kim, Y. K.Park, B. H.Kim, S. C.Jung, “Synthesis of tin and tin oxide nanoparticles using liquid phase plasma in an aqueous solution,” Microelectron. Eng., vol. 126, pp. 153–157, 2014.
[37] S.Samukawa, “The 2012 plasma roadmap,” J. Phys. D. Appl. Phys., vol. 45, no. 25, 2012.
[38] K.Baba, T.Kaneko, R.Hatakeyama, “Ion irradiation effects on ionic liquids interfaced with rf discharge plasmas,” Appl. Phys. Lett., vol. 90, no. 20, pp. 88–91, 2007.
[39] X.Huang, Y.Li, X.Zhong, “Effect of experimental conditions on size control of Au nanoparticles synthesized by atmospheric microplasma electrochemistry,” Nanoscale Res. Lett., vol. 9, no. 1, pp. 1–7, 2014.
[40] C.Richmonds, R. M.Sankaran, “Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations,” Appl. Phys. Lett., vol. 93, no. 13, pp. 1–4, 2008.
[41] D.Mariotti, J.Patel, V.Švrček, P.Maguire, “Plasma-liquid interactions at atmospheric pressure for nanomaterials synthesis and surface engineering,” Plasma Process. Polym., vol. 9, no. 11–12, pp. 1074–1085, 2012.
[42] S.Xu, J.Long, L.Sim, C. H.Diong, K.Ostrikov, “RF plasma sputtering deposition of hydroxyapatite bioceramics: Synthesis, performance, and biocompatibility,” Plasma Process. Polym., vol. 2, no. 5, pp. 373–390, 2005.
[43] K.Baba, T.Kaneko, R.Hatakeyama, “Efficient synthesis of gold nanoparticles using ion irradiation in gas-liquid interfacial plasmas,” Appl. Phys. Express, vol. 2, no. 3, 2009.
[44] T. A.Kareem , A. A.Kaliani, “Glow discharge plasma electrolysis for nanoparticles synthesis,” Ionics (Kiel)., vol. 18, no. 3, pp. 315–327, 2012.
[45] P.Bruggeman, J.Liu, J.Degroote, M. G.Kong, J.Vierendeels, C.Leys, “Dc excited glow discharges in atmospheric pressure air in pin-to-water electrode systems,” J. Phys. D. Appl. Phys., vol. 41, no. 21, 2008.
[46] R.Akolkar, R. M.Sankaran, “Charge transfer processes at the interface between plasmas and liquids,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 31, no. 5, p. 050811, 2013.
[47] Y.Toriyabe, S.Watanabe, S.Yatsu, T.Shibayama, T.Mizuno, “Controlled formation of metallic nanoballs during plasma electrolysis,” Appl. Phys. Lett., vol. 91, no. 4, pp. 0–3, 2007.
[48] E.Camerotto et al., “Study of ultrasound-assisted radio-frequency plasma discharges in n-dodecane,” J. Phys. D. Appl. Phys., vol. 45, no. 43, 2012.
[49] T.Paulmier, J. M.Bell, P. M.Fredericks, “Deposition of nano-crystalline graphite films by cathodic plasma electrolysis,” Thin Solid Films, vol. 515, no. 5, pp. 2926–2934, 2007.
[50] T.Paulmier, J. M.Bell, P. M.Fredericks, “Plasma electrolytic deposition of titanium dioxide nanorods and nano-particles,” J. Mater. Process. Technol., vol. 208, no. 1–3, pp. 117–123, 2008.
[51] J.Hieda, N.Saito, O.Takai, “Exotic shapes of gold nanoparticles synthesized using plasma in aqueous solution,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 26, no. 4, pp. 854–856, 2008.
[52] “48.pdf.” .
[53] T.Paulmier, J.M.Bell, P. M.Fredericks, “Development of a novel cathodic plasma/electrolytic deposition technique. Part 2: Physico-chemical analysis of the plasma discharge,” Surf. Coatings Technol., vol. 201, no. 21 SPEC. ISS., pp. 8771–8781, 2007.
[54] O.Takai, “Solution plasma processing (SPP),” Pure Appl. Chem., vol. 80, no. 9, pp. 2003–2011, 2008.
[55] O.Höfft, F.Endres, “Plasma electrochemistry in ionic liquids: An alternative route to generate nanoparticles,” Phys. Chem. Chem. Phys., vol. 13, no. 30, pp. 13472–13478, 2011.
[56] G.Saito, T.Akiyama, “Nanomaterial Synthesis Using Plasma Generation in Liquid,” J. Nanomater., vol. 2015, 2015.
[57] Y. B.Xie, C. J.Liu, “Stability of ionic liquids under the influence of glow discharge plasmas,” Plasma Process. Polym., vol. 5, no. 3, pp. 239–245, 2008.
[58] S. A.Meiss, M.Rohnke, L.Kienle, S.Zein El Abedin, F.Endres, J.Janek, “Employing plasmas as gaseous electrodes at the free surface of ionic liquids: Deposition of nanocrystalline silver particles,” ChemPhysChem, vol. 8, no. 1, pp. 50–53, 2007.
[59] P.Au , “applied sciences Plasma Enhanced Wet Chemical Surface Activation of TiO 2 for the Synthesis of High Performance.”
[60] X. Z.Huang, “Plasmonic Ag nanoparticles via environment-benign atmospheric microplasma electrochemistry,” Nanotechnology, vol. 24, no. 9, 2013.
[61] Q.Chen, J.Li, Y.Li, “A review of plasma-liquid interactions for nanomaterial synthesis,” J. Phys. D. Appl. Phys., vol. 48, no. 42, p. 424005, 2015.
[62] T.Kaneko, K.Baba, T.Harada, R.Hatakeyama, “Novel gas-liquid interfacial plasmas for synthesis of metal nanoparticles,” Plasma Process. Polym., vol. 6, no. 11, pp. 713–718, 2009.
[63] T.Kaneko, K.Baba, R.Hatakeyama, “Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode,” J. Appl. Phys., vol. 105, no. 10, 2009.
[64] A.Imanishi, M.Tamura, S.Kuwabata, “Formation of Au nanoparticles in an ionic liquid by electron beam irradiation,” Chem. Commun., no. 13, pp. 1775–1777, 2009.
[65] A.V.Krasheninnikov, K.Nordlund, “Ion and electron irradiation-induced effects in nanostructured materials,” J. Appl. Phys., vol. 107, no. 7, 2010, doi: 10.1063/1.3318261.
[66] C.Richmonds, R. M.Sankaran, “Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations,” Appl. Phys. Lett., vol. 93, no. 13, pp. 129–132, 2008.
[67] J.Patel, L.Němcová, P.Maguire, W. G.Graham, D.Mariotti, “Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry,” Nanotechnology, vol. 24, no. 24, 2013.
[68] T.Cserfalvi, P.Mezei, “Operating mechanism of the electrolyte cathode atmospheric glow discharge,” Fresenius. J. Anal. Chem., vol. 355, no. 7–8, pp. 813–819, 1996.
[69] C.Richmonds, “Electron-transfer reactions at the plasma-liquid interface,” J. Am. Chem. Soc., vol. 133, no. 44, pp. 17582–17585, 2011.
[70] H. E.Delgado, D. T.Elg, D. M.Bartels, P.Rumbach, D. B.Go, “Chemical Analysis of Secondary Electron Emission from a Water Cathode at the Interface with a Nonthermal Plasma,” Langmuir, vol. 36, no. 5, pp. 1156–1164, 2020.
[71] W. H.Chiang, R. M.Sankaran, “Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning Ni x Fe 1x nanoparticles,” Nat. Mater., vol. 8, no. 11, pp. 882–886, 2009.
[72] T.Yan, X.Zhong, A. E.Rider, Y.Lu, S. A.Furman, K.Ostrikov, “Microplasma-chemical synthesis and tunable real-time plasmonic responses of alloyed AuxAg1-x nanoparticles,” Chem. Commun., vol. 50, no. 24, pp. 3144–3147, 2014.
[73] E.Boisselier, D.Astruc, “Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev., vol. 38, no. 6, pp. 1759–1782, 2009.
[74] S. K.Sengupta, O. P.Singh, “Contact glow discharge electrolysis: a study of its chemical yields in aqueous inert-type electrolytes,” J. Electroanal. Chem., vol. 369, no. 1–2, pp. 113–120, 1994.
[75] 林哲蔚,「常壓電漿高聚能型噴射束製備奈米顆粒之研究」,台灣科技大學機械工程系,碩士論文,2015.
[76] C.GUOZHONG, Nanostructures and nanomaterials: synthesis, properties and applications. 2014.
[77] B. R.Locke , K. Y.Shih, “Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water,” Plasma Sources Sci. Technol., vol. 20, no. 3, 2011.
[78] A. A.Joshi, B. R.Locke, P.Arce, W. C.Finney, “Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution,” J. Hazard. Mater., vol. 41, no. 1, pp. 3–30, 1995.
[79] J. A.Ghormley, C. J.Hochanadel, “A cobalt gamma-ray source used for studies in radiation chemistry,” Rev. Sci. Instrum., vol. 22, no. 7, pp. 473–475, 1951.
[80] J.Staehelin J.Holgné, “Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide,” Environ. Sci. Technol., vol. 16, no. 10, pp. 676–681, 1982.
[81] D.Möller, “Atmospheric hydrogen peroxide: Evidence for aqueous-phase formation from a historic perspective and a one-year measurement campaign,” Atmos. Environ., vol. 43, no. 37, pp. 5923–5936, 2009, doi: 10.1016/j.atmosenv.2009.08.013.
[82] M. A.Malik, A.Ghaffar, S. A.Malik, “Water purification by electrical discharges,” Plasma Sources Sci. Technol., vol. 10, no. 1, pp. 82–91, 2001.
[83] A.Muñoz, “Single electron tracks in water vapour for energies below 100 eV,” Int. J. Mass Spectrom., vol. 277, no. 1–3, pp. 175–179, 2008.
[84] R.Peyrous, P.Pignolet, B.Held, “Kinetic simulation of gaseous species created by an electrical discharge in dry or humid oxygen,” J. Phys. D. Appl. Phys., vol. 22, no. 11, pp. 1658–1667, 1989.
[85] H. A.Schwarz, “Free radicals generated by radiolysis of aqueous solutions,” J. Chem. Educ., vol. 58, no. 2, pp. 101–105, 1981.
[86] D. E.Carter, “Oxidation-reduction reactions of metal ions,” Environ. Health Perspect., vol. 103, no. SUPPL. 1, pp. 17–19, 1995.
[87] J. A.LaVerne, H.Yoshida, “Production of the hydrated electron in the radiolysis of water with helium ions,” J. Phys. Chem., vol. 97, no. 41, pp. 10720–10724, 1993.
[88] S.Wang, K.Qian, X.Bi, W.Huang, “Influence of speciation of aqueous HAuCl4 on the synthesis, structure, and property of Au colloids,” J. Phys. Chem. C, vol. 113, no. 16, pp. 6505–6510, 2009.
[89] C. C.Chen, C. C.Chyau, C. C.Liao, T. J.Hu, C. F.Kuo, Enhanced anti-inflammatory activities of Monascus pilosus fermented products by addition of ginger to the medium., vol. 58, no. 22. 2010.
[90] N. T. K.Thanh, N.Maclean, S.Mahiddine, “Mechanisms of nucleation and growth of nanoparticles in solution,” Chem. Rev., vol. 114, no. 15, pp. 7610–7630, 2014.
[91] T.Ohshima, K.Okuyama, M.Sato, “Effect of culture temperature on high-voltage pulse sterilization of Escherichia coli,” J. Electrostat., vol. 55, no. 3–4, pp. 227–235, 2002.
[92] H.Furusho, K.Kitano, S.Hamaguchi, Y.Nagasaki, “Preparation of Stable Water-Dispersible PEGylated Gold Nanoparticles Assisted by Nonequilibrium Atmospheric-Pressure Plasma Jets,” Chem. Mater., vol. 21, no. 15, pp. 3526–3535, 2009.
[93] P.VanThai , “Size/shape control of gold nanoparticles synthesized by alternating current glow discharge over liquid: The role of pH,” Mater. Res. Express, vol. 6, no. 9, 2019.
[94] D.V.Goia, E.Matijević, “Tailoring the particle size of monodispersed colloidal gold,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 146, no. 1–3, pp. 139–152, 1999.
[95] X.Ji, X.Song, J.Li, Y.Bai, W.Yang, X.Peng, “Size control of gold nanocrystals in citrate reduction: The third role of citrate,” J. Am. Chem. Soc., vol. 129, no. 45, pp. 13939–13948, 2007.
[96] 蔡昆育,「常壓輝光放電製程於有價金屬循環高值化關鍵技術之研究」,國立臺灣科技大學機械工程系,碩士論文,2018。
[97] 鍾尚元,「常壓輝光放電電解回收處理高值化含銀、銅離子溶液之研究」,國立台灣科技大學機械工程系,碩士論文,2019。
[98] C.Du, M.Xiao, “Cu2O nanoparticles synthesis by microplasma,” Sci. Rep., vol. 4, pp. 3–7, 2014,.
[99] B. B.Sahu, S. B.Jin, J. G.Han, “Development and characterization of a multi-electrode cold atmospheric pressure DBD plasma jet aiming plasma application,” J. Anal. At. Spectrom., vol. 32, no. 4, pp. 782–795, 2017.
[100] R.Brandenburg, “Antimicrobial treatment of heat sensitive materials by means of atmospheric pressure Rf-driven plasma jet,” Contrib. to Plasma Phys., vol. 47, no. 1–2, pp. 72–79, 2007.
[101] J. E.Foster, “Plasma-based water purification: Challenges and prospects for the future,” Phys. Plasmas, vol. 24, no. 5, pp. 0–16, 2017.
[102] J.Weerasinghe, “Bactericidal silver nanoparticles by atmospheric pressure solution plasma processing,” Nanomaterials, vol. 10, no. 5, pp. 1–10, 2020.
[103] M.Vialle, M.Touzeau, G.Gousset, “Kinetics of o(1s) and o(1d) metastable atoms in a dc oxygen glow discharge,” J. Phys. D. Appl. Phys., vol. 24, no. 3, pp. 301–308, 1991.
[104] J.Jiang, “A new study on the penetration of reactive species in their mass transfer processes in water by increasing the electron energy in plasmas,” Phys. Plasmas, vol. 23, no. 10, 2016.
[105] Y.Itikawa, N.Mason, “Cross sections for electron collisions with water molecules,” J. Phys. Chem. Ref. Data, vol. 34, no. 1, pp. 1–22, 2005.
[106] N. C.Roy, M. R.Talukder, A. N.Chowdhury, “OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet,” Plasma Sci. Technol., vol. 19, no. 12, 2017.
[107] H. P. G.David W. Oxtoby, Principles of Modern Chemistry, no. 1. Cengage Learning, 2016.
[108] A.Shah, Sirajuddin, A.Niaz, M. I.Bhanger, M. K.Jamali, “Electro-recovery of gold (III) from aqueous solutions and refractory, boulangerite (Pb5Sb4S11) ore,” Acta Chim. Slov., vol. 54, no. 4, pp. 907–911, 2007.
[109] 黃永方,「印刷電路板產業化學鎳廢液回收鎳金屬之研究」國立交通大學工學院碩士在職專班永續環境科技組,碩士論文,2011。
[110] P.Rumbach, D. M.Bartels, R. M.Sankaran, D. B.Go, “The effect of air on solvated electron chemistry at a plasma/liquid interface,” J. Phys. D. Appl. Phys., vol. 48, no. 42, p. 424001, 2015.
[111] J.Kadokawa, Ionic Liquids -New Aspects for the Future. InTech, 2013.
[112] R.Zhou , “Cold atmospheric plasma activated water as a prospective disinfectant: The crucial role of peroxynitrite,” Green Chem., vol. 20, no. 23, pp. 5276–5284, 2018.
[113] Q.Chen, J.Li, K.Saito, H.Shirai, “The characterization of radio-frequency discharge using electrolyte solution as one electrode at atmospheric pressure,” J. Phys. D. Appl. Phys., vol. 41, no. 17, 2008.
[114] L.Kao, S. S.Chung, C. C.Chen, C. Y.Chang, H. C.Lin, “of Hot in,” pp. 16–17, 2000.
[115] X. L. M. L. S. R. D.Liu, Nonequilibrium Atmospheric Pressure Plasma Jets Fundamentals, Diagnostics, and Medical Applications. 2019.
[116] J. K. R.John E. McMurry, Robert C. Fay, Chemistry, vol. 53, no. 9. Pearson, 2015.
[117] N.Khatoon et al., “Synthesis and spectroscopic characterization of gold nanoparticles via plasma-liquid interaction technique,” AIP Adv., vol. 8, no. 1, 2018.
[118] Y.Chen, X.Gu, C. G.Nie, Z. Y.Jiang, Z. X.Xie, C. J.Lin, “Shape controlled growth of gold nanoparticles by a solution synthesis,” Chem. Commun., vol. 1, no. 33, pp. 4181–4183, 2005.
[119] J. H.Musser, Practical Treatment, vol. 11, no. 6. 1918.
[120] Y.Lu, Z.Ren, H.Yuan, Z.Wang, B.Yu, J.Chen, “Atmospheric-pressure microplasma as anode for rapid and simple electrochemical deposition of copper and cuprous oxide nanostructures,” RSC Adv., vol. 5, no. 77, pp. 62619–62623, 2015.
[121] K.Pacławski, D. A.Zaja̧c, M.Borowiec, C.Kapusta, K.Fitzner, “EXAFS studies on the reaction of gold (III) chloride complex ions with sodium hydroxide and glucose,” J. Phys. Chem. A, vol. 114, no. 44, pp. 11943–11947, 2010.
[122] M. A.Bratescu, S. P.Cho, O.Takai, N.Saito, “Size-controlled gold nanoparticles synthesized in solution plasma,” J. Phys. Chem. C, vol. 115, no. 50, pp. 24569–24576, 2011.
[123] S. R. C.Douglas A. Skoog, Donald M. West, F. James Holler, Instructor’s Solutions Manual to Fundamentals of Analytical Chemistry. Cengage Learning, 2013.
[124] S.Horikoshi, S.Sato, M.Abe, N.Serpone, “A novel liquid plasma AOP device integrating microwaves and ultrasounds and its evaluation in defluorinating perfluorooctanoic acid in aqueous media,” Ultrason. Sonochem., vol. 18, no. 5, pp. 938–942, 2011.
[125] C. K.Tsung, “Shape and orientation-controlled gold nanoparticles formed within mesoporous silica nanofibers,” Adv. Funct. Mater., vol. 16, no. 17, pp. 2225–2230, 2006.
[126] 許仲毅,「光輻射法製造奈米顆粒之機制研究」,國立臺北科技大學材料科學與工 程系,碩士論文,2011.

無法下載圖示 全文公開日期 2025/08/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE