簡易檢索 / 詳目顯示

研究生: 吳錦銓
Chin-chuan Wu
論文名稱: 利用感測器與LEDs的最佳篩選方法重建自然光
Optimal selection of sensors and LEDs for daylight reconstruction
指導教授: 胡能忠
Neng-Chung Hu
口試委員: 孫慶成
Ching-Cherng Sun
黃忠偉
Jong-woei Whang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 82
中文關鍵詞: 日光日光光譜最佳感測器組合LED動態日光照明燈
外文關鍵詞: optimal sensor sets, daylight spectrum, daylight, LED, dynamic daylight illuminant
相關次數: 點閱:254下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文提供了利用平均日光Eav(λ)及Eav(λ)與量測出的416筆日光光譜之間的差異值來篩選出最佳感測器來重建日光光譜並選出最佳LEDs 來建構一個動態日光照明燈的方法,在篩選最佳感測器之中是由市售的30個感測器之中挑選出最佳的6個感測器來重建日光譜,利用本文所偍供的平均日光之係數誤差 及日光光譜誤差平均值 來篩選出最佳的6個感測器,其計算量由全搜尋的 *416=247010400減為43693,兩者相差了5652倍,所以由此方法快速的篩選出最佳的感測器。而日光重建的方法更可以用於物件表面或人臉反射係數之多頻譜再現。
而篩選最佳的LEDs來建構一個動態日光光譜光源之中是由平均日光光譜Eav(λ)先找出12個LEDs,再利用SRSE與AC/DC能量比兩個評估指數或刪除法作挑選LED 組合的依據,由最小的兩個評估指數找出最適合的LED來建構日光光源。將LEDs由12個刪至6個且重建日光的演色指數CRI>90的最佳經濟效果,在利用選出的6個LEDs為依據,選購LEDs並將這6個LEDs打在同一個導線架上,搭配微處理器產生脈波寬度調變PWM製作動態日光照明燈。
關鍵字: 日光,日光光譜,最佳感測器組合,LED,動態日光照明燈


The dissertation provides selection optimal sensors to reconstruct Daylight spectrum and optimal LEDs to create a dynamic daylight illuminant from average measurement 416 daylight spectra and difference between average daylight spectrum and daylight spectrum. In the selection optimal sensors, it selects 6 optimal sensors from 30 commercial sensors to reconstruct daylight spectrum. Using average daylight coefficient error and averaged daylight spectrum error selects 6 optimal sensors. The reduced computing from full search *416=247010400 to 43693 is difference 5652 times. The method will be faster to find optimal sensors than full search. Selecting optimal sensors recovery daylight method can be applied to signal reproduction such as surface or human face reflectance reconstruction in multispectral imaging.
In selection optimal LEDs to create dynamic daylight illuminant finds 12 LEDs from average daylight spectrum, and uses the two indexes SRSE and AC/DC energy ratio or pruning process to select optimal LEDs. The most economic effect result only needs 6 LEDs and the color rendering index (CRI) of reconstructed daylight source >90. Using the 6 optimal LEDs buys commercial LEDs holding in a leadframe and micro process products pulse width modulation (PWM) to create dynamic daylight illuminant.
Keyword: daylight, daylight spectrum, optimal sensor sets, LED, dynamic daylight illuminant

Contents Contents………..……………………….……………….…………..…..Ⅰ Figure index…………….……………………………………….......…..II Table index……..……………………………………………….…..…..Ⅳ Chapter 1 Introduction 1.1 Background..………………………………………….…..…..…1 1.2 Objectives.……………………………………………....………3 Chapter 2 Daylight characteristics 2.1 Daylight spectrum………………………….…………………..9 2.2 Daylight colors………………………………….………….….11 2.3 Color temperature…………………………….......………...….19 2.4 Color rendering………………………………….....……….….23 Chapter 3 Optimal sensors and LEDs reconstruct Daylight 3.1 Optimal Selection of Commercial Sensors for Linear model representation of Daylight Spectra……………….......………..30 3.2 Daylight Spectral Illuminant by Optimal LEDs….....................38 Chapter 4 Simulations 4.1 Optimal Selection of Commercial Sensors for Linear model representation of Daylight Spectra…………….......................43 4.2 Optimal Sensors Application in Discrimination Between Real and Synthetic Human Faces Using Reflectance Function of Skin……………………………………………………………57 4.3 Daylight Spectral Illuminant by Optimal LEDs……………….59 4-4 Optimal LEDs Application in Real dynamic daylight illuminant……………………………………………………..66 Chapter 5 Conclusion and Work In The Future…………………………69 Reference………………………………………………………………..71 Figure indexes Figure 2.1 Relative radiant power distribution of 10 different phases of daylight...……………………………………………………………..…10 Figure 2.2 The colors of the visible light spectrum……………………..11 Figure 2.3 The CIE of three color-matching functions , , and ....................................................................................................14 Figure 2.4 The CIE 1931 color space chromaticity diagram....................16 Figure 2.5 Uniform color space CIEuv…………………………………17 Figure 2.6 The color temperature in CIE 1931 color space chromaticity diagram ………………………………………………………………....19 Figure 2.7 Computation of the CCT Tc corresponding to the chromaticity coordinate (uT,vT) in the CIE 1960 UCS…………………………...……20 Figure 2.8 Test color samples…………………………………………...27 Figure 2.9 Macbeth color chart………………………………………....27 Figure 4.1 Aerage daylight spectrum of the 416 measurement daylight spectra.…………………………………………………………………..42 Figure 4.2 Six basis functions for daylight recovery.………………...…44 Figure 4.3 Three SPDs of dawn, noon, dusk not in the training set are reconstructed by the 6 basis functions.………………………………....45 Figure 4.4 The histogram of for 5005 sensor sets obtained by selecting 6 sensors from 15 proper sensors.……………………………48 Figure 4.5 Six spectral responsivity functions of the best 6-sensor set No. 25.……………………………………………………………………....52 Figure 4.6 Spectral error of the top 1000 sensor combinations chosen from a full search method.………………………………………...……53 Figure 4.7 (a) reflectance basis 1of human face skin………………..…57 Figure 4.7 (b) reflectance basis 2of human face skin………………..…58 Figure 4.7 (c) reflectance basis 3of human face skin………………..…58 Figure 4.8 Average daylight recovery spectrum by optimal sensor set.………………………………………………………………………59 Figure 4.9 Ten peaks of selected……………………………….…60 Figure 4.10 Linearly combined spectrum of the10 LEDs in figure 4.8 with unity coefficients. Two LEDs whose peak wavelengths are 505nm and 615nm are added to form a 12-LED set with less SRSE value.……………………………………………………………….…..61 Figure 4.11 and its Synthesized waveforms by the 12-LED set with GFC=0.999858 and synthesis error=0.016590. and its Synthesized waveforms by the 12-LED set with GFC=0.99925 and synthesis error=0.036590…………………………………………………….……62 Figure 4.12 6commercial LEDs hold in a leadframe……………………67 Figure 4.13 Micro process 8051 products PWM to control LED………67 Figure 4.14 Structure of dynamic daylight illuminant by 6 LEDs...……67 Figure 4.15 Daylight illuminant (a)Dawn (less yellowish) (b) Golden light (yellowish) (c) Noon (d) Candle light (reddish) (e) Dusk (less reddish)…………………………………………………………….68 Table indexes Table 2.1 Daylight intensity in different conditions…………………...…8 Table 2.2 CCT parameter value ………………………………………...22 Table 4.1 The daylight recovery metrics of different daylight spectra.……………………………………………………………...…...46 Table 4.2 The best 10 sensor sets selected according to or from 93 candidates. The rankings of the 10 sets are unchanged by using either or ……………………………………………………………………..50 Table 4.3 The metrics of the 10 best sensor sets with 6 sensors, where S.D denotes the standard deviation. The rightmost two columns are the recovery metrics for the spectra not in the training sets.……….………51 Table 4.4 The top 10 sensor sets obtained by a full search method…………………………………………………………………..54 Table 4.5 The top 10 sensor sets obtained by the proposed method……54 Table 4.6 Recovery metrics and sensor numbers of optimal 3- to 6- sensor sets. These are obtained by the same number of sensors and basis functions. ………………………………………………………………55 Table 4.7 Recovery metrics and sensor numbers of optimal 3- to 6- sensor sets. These are obtained by 61 basis functions. As a result, a set of more sensors can be obtained by a set of few sensors.……….…………….…56 Table 4.8 10 LEDs selected according to the peaks of average recovery daylight in figure 4.8 and two more LEDs added to form a 12-LED set with less SRSE value.…………………………………………..……....61 Table 4.9 The synthesis metrics for synthesizing in each pruning process from 12 LEDs to 6 LEDs. The pruning process is terminated if the GFC is less than 0.995.…………………………………………….62 Table 4.10 Synthesis metrics for the 416 daylight spectra synthesized by the 6-LED set selected according to Table 4.8.………………………...65 Table4.11 Top 10 6-LED set combinations selected from 12 LEDs with small SRSE values and their associated AC/DC energy ratios.……………………………………………………………….…..65 Table 4.12 Irradiance, CRI, and CT of five illumination in the dynamic daylight illuminant……….…………………………………………….68

Reference:
1. B. Hood, D. Bruck, and G. Kennedy, “Determinants of sleep quality in the healthy aged: the role of physical, psychological, circadian and naturalistic light variables,” Age and Ageing. Vol. 33 No. 2, pp. 159-165 (2004).
2. S. Leppmki, Y. Meesters, and J. Haukka, “Effect of simulated dawn on quality of sleep – a community-based trail,” BMC Psychiatry (2003).
3. P. F. Gasio, K. Kruchi, and C. Cajochen, “Dawn-dusk simulation light therapy disturbed circadian rest-activity cycles in demented elderly,” Experimental Gerontology, Vol. 38, pp. 207-216 (2003).
4. S. M. Pauley, “Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue,” Medical Hypotheses, Vol. 63, pp 588-596(2004).
5. W. V. Bommel and G. V. Beld, “Lighting for work: review of visual and biological effects,” Lighting Res. Technol, Vol. 36. 4, pp 255-269 (2004).
6. S. Begemann, G. Beld, and A. Tenner, “Daylight, artificial light and people in an office environment, overview of visual and biological responses,” Int. J. Ind. Ergonomics, pp 231-239 (1997).
7. J. H. Andrs, J. Romero, G. B. Antonio, and J.L. Nieves, “Testing linear models on spectral daylight measurements,” Appl. Opt. 37, 971-972 (1998).
8. Z. Pan, G. Healey, and D. Slater, “Global spectral irradiance variability and material discrimination at Boulder, Colorado,” J. Opt. Soc. Am. A 20, 513-521 (2003).
9. J. Romero, G. B. Antonio, and J. L. Nieves, “Linear bases for representation of natural and artificial illuminants,” J. Opt. Soc. Am. A 14, 1007-1014 (1997).
10. D. Judd, D. MacAdam, and G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. A 54, 1031-1040 (1964).
11. G. Healey and L. Benites, “Linear models for spectral reflectance functions over the mid-wave and long-wave infrared,” J. Opt. Soc. Am. A 15, 2216-2227 (1998).
12. D. H. Marimont and B. A. Wandell, “Linear models of surface and illuminant spectra,” J. Opt. Soc. Am .A 9, 1905-1913 (1992).
13. N. Shimano, “Optimization of spectral sensitivities with Gaussian distribution functions for a color image acquisition device in the presence of noise,” Opt. Eng. 45(1), 013201-1-013201-8 (2006).
14. V. Cheung, S. Westland, C. Li, J. Hardeberg, and D. Connah, “Characterization of trichromatic color cameras by using a new multispectral imaging technique,” J. Opt. Soc. Am. A 22, 1231-1240 (2005).
15. J. L. Nieves, E. M. Valero, S. M. C. Nascimento, H. A. Javier, and J. Romero, “Multispectral synthesis of daylight using a commercial digital CCD camera,” Appl. Opt. 44, 5696-5703 (2005).
16. H. A. Javier, J. L. Nieves, E. M. Valero, and J. Romero, “Spectral-daylight recovery by use of only a few sensors,” J. Opt. Soc. Am. A 21, 13-23 (2004).
17. A. L. . Miguel, H. A. Javier, J. Romero, and R. L. Lee, “Designing a practical system for spectral imaging of skylight,” Appl. Opt. 44, 5688-5695 (2005).
18. “Daylight intensity in different conditions,” http://www.answers.com/
topic/daylight.
19. “What benefits are claimed for daylight,” http://www.lrc.rpi.edu/
programs/NLPIP/lightingAnswers/fullSpectrum/benefits.asp.
20. “Color,” http://en.wikipedia.org/wiki/Color#Spectral_colors.
21. D. MacAdam and D. Lewis, “Projective transformations of I.C.I. color specifications,” J. Opt. Soc. Am. A 27 (8), 94–299 (1937).
22. “Color temperature,” http://www.juliantrubin.com/encyclopedia/
engineering/color_temperature.html.
23. A. Robertson and R. Alan, “Computation of Correlated Color Temperature and Distribution Temperature,” J. Opt. Soc. Am. A 58 (11), 1528–1535 (1968).
24. C. S. McCamy and S. Calvin, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Research & Application 17 (2), 142–144 (1992).
25. H. A. Javier, L. Raymond, and R. Javier, “Calculating Correlated Color Temperatures Across the Entire Gamut of Daylight and Skylight Chromaticities,” Appl. Opt. 38 (27), 5703–5709 (1999).
26. CIE, Color rendering, Publication 135/2, ISBN 3-900-734-97-6 (1999).
27. 大田登,「色彩工學」,pp. 206-211,西安工業學院(1996)
28. CIE, CIE Colorimetric and Colour Rendering Tables, Disk D002, Rel 1.3 (2004).
29. CIE, Colour rendering of white LED light sources, Publication 177, ISBN 978-3901906572 (2007).
30. “ Color rendering index color sample,” http://en.wikipedia.org/wiki/
Color_rendering_index.
31. “Von Kries transform,” http://en.wikipedia.org/wiki/Von_Kries_
transform.
32. G. D. Crawford and B. Hewson, “Measurement of color rendering tolerances,” J. Opt. Soc. Am. A 49(12), 1147-1156 (1959).
33. D.Wendy and O. Yoshi, “Color Rendering of Light Sources,” NIST (2006).
34. G. Xin and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Lighting Research and Technology 36(3), 183–199 (2004).
35. N. Dorothy and C. W. Jerome, “Color rendering of light sources: CIE method of specification and its application”, Illuminating Engineering (IESNA) 60(4), 262-271 (1965).
36. A. Papoulis, Probability, random variables, and stochastic processes, 2nd edition, McGraw-Hill Book Company
37. J. L. Nieves, E. M. Valero, S. M. C. Nascimento, H. A. Javier, and J. Romero, “Multispectral synthesis of daylight using a commercial digital CCD camera,” Appl. Opt. 44, 5696-5703 (2005).
38. R. Sekuler and R. Blake, Perception, third edition, McGraw Hill book company, pp.195 (1994).
39. N. Ohta and H. Urabe, ”Spectral color matching by means of minimax approximation,” Appl. Opt. 11(11), 2551- 2553 (1972).
40. “Euclidean rule,” http://jwilson.coe.uga.edu/EMT668/EMT668.
Folders.F97/Anderson/geometry/assignment14/assn14.html
41. NTUST, ”CCD SPD figure,”http://140.118.121.195/sensorSPDfig
42. SENTECH, ”CCD,” http://www.apisc.com/camera_sentech.htm.
43. Micromedia, ”CMOS,”http://www.micromedia.com.tw/tw/index.php.
44. YGYES, ”filter,” http://www.ygyes.com/en/product.html.
45. FRAMOS, ”LU110,“ http://www.framos.de/www.dir/en/produkte/kameras.
46. DVCCO, “CCD_ICX428, ”http://www.dvcco.com/dvc-710_series.
html.
47. 郭卜僑,「利用反射係數做真假人臉辨識」,(2006)
48. 陳世豐,「LED排列模擬與實体研究」,(2008)

QR CODE