簡易檢索 / 詳目顯示

研究生: 陳又嘉
You-Jia Chen
論文名稱: 牡蠣殼粉對超硫酸鹽水泥漿體工程性質影響之研究
Study on Effects of Oyster Shell Ash on Engineering Properties of Supersulfated Cement Paste
指導教授: 陳君弢
Chun-Tao Chen
張大鵬
Ta-Peng Chang
口試委員: 廖敏志
Min-Chih Liao
何嘉浚
Chia-Chun Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 111
中文關鍵詞: 煅燒牡蠣殼粉超硫酸鹽水泥漿體飛灰水淬爐石粉
外文關鍵詞: Calcined oyster shell ash, Supersulfated cement paste, Fly ash, Ground granulated blast furnace slag (GGBFS)
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要............................................. ii Abstract............................................. ii 致謝............................................. iv 目錄............................................. v 表目錄............................................. vii 圖目錄............................................. viii 第一章 緒論............................................. 1 1.1 研究動機............................................. 1 1.2 研究目的............................................. 2 1.3 研究流程............................................. 2 1.4 預期成果............................................. 2 第二章 文獻回顧............................................. 5 2.1 前言............................................. 5 2.2 工業副產物............................................. 6 2.2.1 水淬高爐石粉............................................. 6 2.2.2 排煙脫硫石膏............................................. 7 2.2.3 飛灰............................................. 9 2.2.4 牡蠣殼粉............................................. 10 2.3 超硫酸鹽水泥之水化機理............................................. 11 2.4 超硫酸鹽水泥之相關研究............................................. 12 第三章 研究計畫............................................. 19 3.1 試驗內容與流程............................................. 19 3.2 試驗材料介紹與備製............................................. 19 3.2.1 水淬高爐石粉............................................. 19 3.2.2 排煙脫硫石膏............................................. 19 3.2.3 飛灰............................................. 20 3.2.4 煅燒牡蠣殼粉............................................. 20 3.2.5 卜特蘭水泥............................................. 20 3.3 試驗儀器設備............................................. 21 3.4 試驗變數與配比設計............................................. 23 3.4.1 試驗變數與說明............................................. 23 3.4.2 配比編號說明............................................. 24 3.4.3 配比規劃............................................. 25 3.5 拌合步驟............................................. 25 3.6 試驗方法............................................. 26 3.6.1 基本性質試驗............................................. 26 3.6.2 新拌性質試驗............................................. 27 3.6.3 力學性質試驗............................................. 29 3.6.4 體積穩定性試驗............................................. 30 3.6.5 非破壞性質試驗............................................. 30 第四章 結果與討論............................................. 53 4.1 新拌性質............................................. 53 4.1.1 凝結時間............................................. 53 4.1.2 流度試驗............................................. 54 4.1.3 水化熱試驗............................................. 56 4.2 力學性質............................................. 57 4.2.1 抗壓強度............................................. 57 4.3 體積穩定性試驗............................................. 61 4.3.1 乾縮棒試驗............................................. 61 4.4 非破壞性試驗............................................. 64 4.4.1 熱傳導係數............................................. 64 第五章 結論與建議............................................. 105 5.1 結論............................................. 105 5.2 建議............................................. 107 參考文獻............................................. 109

[1] Córdoba (2015). "Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs." Fuel 144: 274-286.
[2] Djobo (2016). "Partial replacement of volcanic ash by bauxite and calcined oyster shell in the synthesis of volcanic ash-based geopolymers." Construction and Building Materials 113: 673-681.
[3] Gruskovnjak (2008). "Hydration mechanisms of super sulphated slag cement." Cement and Concrete Research 38(7): 983-992.
[4] Hewlett (2019). Lea's chemistry of cement and concrete, Butterworth-Heinemann.
[5] Kuo (2013). "Engineering properties of controlled low-strength materials containing waste oyster shells." Construction and Building Materials 46:128-133.
[6] Liu (2019). "Effect of modified phosphogypsum on the hydration properties of the phosphogypsum-based supersulfated cement." Construction and Building Materials 214: 9-16.
[7] Luz, D. (2015). "Influence of curing temperature on the process of hydration of supersulfated cements at early age." Cement and concrete research 77: 69-75.
[8] Mosher (2012). "Effects of lead on Na+, K+‐ATPase and hemolymph ion concentrations in the freshwater mussel Elliptio complanata." Environmental toxicology 27(5): 268-276.
[9] Naqi (2020). "Examining the potential of calcined oyster shell waste as additive
in high volume slag cement." Construction and Building Materials 230: 116973.
[10] Nguyen (2019). "Influence of low calcium fly ash on compressive strength and
hydration product of low energy super sulfated cement paste." Cement and Concrete Composites 99: 40-48.
[11] Rubert (2018). "Hydration mechanisms of supersulfated cement." Journal of Thermal Analysis and Calorimetry 134(2): 971-980.
[12] Ruslan (2022). "Oyster shell waste as a concrete ingredient: a review." Materials Today: Proceedings 48: 713-719.
[13] Seo (2019). "Calcined oyster shell powder as an expansive additive in cement mortar." Materials 12(8): 1322.
[14] Sun (2022). "Hydration mechanism of calcium sulfoaluminate-activated supersulfated cement." Journal of Cleaner Production 333: 130094.
[15] Wang (2020). "The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: a review." Engineering 6(6): 695-706.
[16] Wu (2021). "Research status of super sulfate cement." Journal of Cleaner Production 294: 126228.
[17] Yang (2005). "Effect of oyster shell substituted for fine aggregate on concrete
characteristics: Part I. Fundamental properties." Cement and Concrete Research
35(11): 2175-2182.
[18] Yang (2010). "Effect of partial replacement of sand with dry oyster shell on the
long-term performance of concrete." Construction and building materials 24(5):758-765.
[19] Yang (2020). "Environmentally benign production of one-part alkali-activated slag with calcined oyster shell as an activator." Construction and Building Materials 257: 119552.
[20] 行政院公共工程委員會 (2001). 公共工程高爐石混凝土使用手冊. 行政院公共工程委員會.
[21] 行政院環境保護署 (2021). 109 年資源回收再利用年報. 行政院環境保護署.
[22] 行政院環境保護署. (2022). "溫室氣體排放統計."
[23] 吳和懋. (2021). "環境「壞小子」變身 台泥創造循環工廠奇蹟."
[24] 亞東預拌混凝土股份有限公司. (2021). "飛灰之基本性質與影響."
[25] 張進發 (2006). 燃煤火力發電與汙染防治. 台灣電力公司 台中火力發電廠.
[26] 黃兆龍 (2007). 混凝土性質與行為. 台北市: 詹氏書局.
[27] 經濟部能源局 (2020). 109 年度我國燃料燃燒二氧化碳排放統計與分析. 經濟部能源局.
[28] 鍾彬楊 (2012). "Structure and property characterization of oyster shell cementing material." 结构化学 31(1): 85-92.

無法下載圖示 全文公開日期 2025/06/29 (校內網路)
全文公開日期 2025/06/29 (校外網路)
全文公開日期 2025/06/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE