簡易檢索 / 詳目顯示

研究生: 廖崇廷
Chung-Ting Liao
論文名稱: 以交聯式流體化床轉化生質炭為合成氣之研究
Study on Conversion of Biochar to Syngas in Interconnected Fluidized Bed Reactor
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 郭俞麟
Yu-Lin Kuo
李豪業
Hao-Yeh Lee
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 129
中文關鍵詞: 化學迴路氣化合成氣載氧體交聯式流體化床
外文關鍵詞: Chemical looping gasification, syngas, oxygen carrier, interconnected fluidized bed reactor
相關次數: 點閱:426下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣化是一種將固液燃料轉成乾淨能源的程序,而化學迴路氣化(Chemical Looping Gasification, CLG)係應用載氧體提供晶格氧產生合成氣的程序,其優點包含(1)還原後較低溫的載氧體能循環至空氣反應器中進行放熱反應,並將高溫載氧體帶回至燃料反應器,為有效能源利用程序;(2)載氧體具有晶格氧與過渡金屬,可氣化與觸媒裂解燃料;(3)與氧氣相比,燃料較易與晶格氧進行部分氧化可提升氣體的低熱值(LHV)。
    本研究以澳洲鐵礦及石英砂作為載氧體與惰性固體、蒸氣作為氣化劑,並以螺桿將生質炭以1.2 g/min速率穩定輸送至交聯式流體化床中反應。首先以固-固部份氧化(solid-solid partial oxidation)及水蒸氣氣化(steam gasification)來確認氣化方式,進一步探討空氣流量、封閉迴路氣體流量、反應溫度、蒸氣/生質炭比(S/B ratio)對氣化反應速率、系統壓力、固體循環率以及氣體組成的影響,其優化條件為空氣反應器流量7.0 L/min、封閉迴路流量3.5 L/min、燃料反應器流量2.0 L/min、反應溫度850℃,S/B Ratio為1.5,可得合成氣產率為0.12 m3kg-1,冷氣效率為21.1%。進一步設計擋板於燃料反應器中,以提高生質炭在燃料反應的滯留時間,可將合成氣產率與冷氣氣化效率分別提高至0.19 m3kg-1與34.69%。燃料反應器與空氣反應器中的載氧體以XRD、BET與SEM進行分析物化特性,顯示其可以長久使用,本研究成果可作為後續反應器改良及實廠操作參數之參考依據。


    Gasification is a significant energy technology that can convert solid/liquid fuels into clean energy. Chemical-looping gasification is a combustion process with using oxygen carrier to provide lattice oxygen for producing syngas. The advantages of CLG are: (1) the reduced oxygen carrier in fuel reactor can be transferred into the air reactor to be re-oxidized and heated, resulting in efficient utilization of energy.; (2)fuels can be gasified and catalytically cracked over oxygen carrier, resulted from it can release the lattice oxygen and exhibit transition metal.; (3) comparing with oxygen gas and oxygen carrier, the partial oxidation of the fuel will be achieved easily with using lattice oxygen, where the low calorific value (LHV) of product is increased.
    In this study, Australian iron ore and quartz sand were used as oxygen carrier and inert. The steam was applied for gasification, and 1.2 g/min of biochar was stably fed by screw into the interconnected fluidized bed. First, the gasification process was determined by comparing solid-solid partial oxidation and steam gasification. The effect of operation parameters (air flow rate, nitrogen flow rate of loop seal, reaction temperature, and steam-to-biomass ratio) on gasification reaction rate, pressure drop of system, solid circulation rate, and composition of exhaust was investigated in detail. The optimum conditions of this system were air flow rate at 7.0 L/min, nitrogen flow rate of loop seal at 3.5 L/min, nitrogen flow rate of fuel reactor at 2.0 L/min, reaction temperature at 850°C, and S/B Ratio at 1.5. 0.12 m3 kg-1 of syngas yield and 21.1% of cold gasification efficiency were obtained. The fuel reactor was redesigned and equipped with a sieve tray for prolonging the retention time of biochar, resulting in the syngas yield and cold gasification efficiency were increased to 0.19 m3kg-1 and 34.69%, respectively. The durability of oxygen carrier is evidenced form the characterization results of XRD, BET and SEM. The research results can be used as a reference for the improvement of system design and operation parameters of pilot.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 一、 緒論 1 1.1 前言 1 1.2 研究動機 2 二、 文獻回顧 3 2.1 化學迴路燃燒簡介 3 2.2 金屬載氧體選擇 5 2.2.1 鐵礦載氧體 7 2.2.2 錳礦載氧體 7 2.2.3 銅礦載氧體 8 2.3 固體燃料介紹 9 2.3.1 煤 9 2.3.2 生質燃料 11 2.3.3 灰燼 11 2.4 固體燃料的燃燒 13 2.5 合成氣的介紹 19 2.6 化學迴路氣化程序 20 2.7 氣化種類 24 2.7.1 水蒸氣氣化 24 2.7.2 固-固部份氧化 26 三、 研究方法 29 3.1 實驗規劃 29 3.2 實驗藥品 30 3.3 實驗設備及分析儀器 32 3.4 實驗步驟及實驗裝置圖 39 3.5 實驗計算 42 3.5.1 碳轉化效率 42 3.5.2 Syngas Yield 42 3.5.3 冷氣氣化效率 43 3.5.4 固體循環率 43 四、 結果與討論 44 4.1 比較水蒸氣氣化與固-固部分氧化對合成氣產率影響 46 4.1.1 水蒸氣氣化 46 4.1.2 固-固部份氧化 55 4.2 探討封閉迴路對合成氣產率影響 63 4.3 探討溫度對合成氣產率影響 71 4.4 探討S/B Ratio對合成氣產率影響 80 4.5 擋板設計對合成氣產率影響 90 4.6 綜合討論 98 五、 結論與未來展望 105 5.1 結論 105 5.2 未來展望 106 參考文獻 108

    [1] 行政院農業委員會,農產廢棄物,2017。檢自https://www.coa.gov.tw/bulletin/bulletin_view.php?id=21380
    [2] A. Nandy, C. Loha, S. Gu, P. Sarkar, M. K. Karmakar and P. K. Chatterjee, “Present status and overview of Chemical Looping Combustion technology,” Renew. Sust. Energ. Rev., Vol. 59, pp. 597-619 (2016).
    [3] S. Luo, L. Zeng and L. S. Fan, “Chemical looping technology: oxygen carrier characteristics,” Annu. Rev. Chem. Biomol. Eng., Vol. 6, pp. 53-75 (2015).
    [4] L. Zeng, M. V. Kathe, E. Y. Chung and L. S. Fan, “Some remarks on direct solid fuel combustion using chemical looping processes,” Curr. Opin. Chem. Eng., Vol. 1, pp. 290-295 (2012).
    [5] M. Rydén, M. Johansson, E. Cleverstam, A. Lyngfelt and T. Mattisson, “Ilmenite with addition of NiO as oxygen carrier for chemical-looping combustion,” Fuel, Vol. 89, pp. 3523-3533 (2010).
    [6] T. Song, J. Wu, H. Zhang and L. Shen, “Characterization of an Australia hematite oxygen carrier in chemical looping combustion with coal,” Int. J. Greenh. Gas Con., Vol. 11, pp. 326-336 (2012).
    [7] P. Cho, T. Mattisson and A. Lyngfelt, “Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion,” Fuel, Vol. 83, pp. 1215-1225 (2004).
    [8] M. Matzen, J. Pinkerton, X. Wang and Y. Demirel, “Use of natural ores as oxygen carriers in chemical looping combustion: A review,” Int. J. Greenh. Gas Con., Vol. 65, pp. 1-14 (2017).
    [9] X. Tian, H. Zhao, K. Wang, J. Ma and C. Zheng, “Performance of cement decorated copper ore as oxygen carrier in chemical-looping with oxygen uncoupling,” Int. J. Greenh. Gas Con., Vol. 41, pp. 210-218 (2015).
    [10] C. Linderholm and A. Lyngfelt. Chemical-looping combustion of solid fuels. Chalmers University of Technology, Gothenburg, Sweden (2015).
    [11] N. Berguerand and A. Lyngfelt, “The use of petroleum coke as fuel in a 10 kWth chemical-looping combustor,” Int. J. Greenh. Gas Con., Vol. 2, pp. 169-179 (2008).
    [12] 教育大市集,碳化程度之煤分類表,2019。檢自 https://market.cloud.edu.tw/content/junior/phy_chem/ty_lk/std/content/enage/cph17/coal.htm
    [13] F. Li, L. Zeng and L. S. Fan, “Biomass direct chemical looping process: process simulation,” Fuel, Vol. 89, pp. 3773-3784 (2010).
    [14] S. Luo, S. Bayham, L. Zeng, O. McGiveron, E. Chung, A. Majumder and L. S. Fan, “Conversion of metallurgical coke and coal using a coal direct chemical looping (CDCL) moving bed reactor,” Appl. Energy, Vol. 118, pp. 300-308 (2014).
    [15] A. Lyngfelt, “Oxygen carriers for chemical looping combustion-4000 h of operational experience,” Oil. Gas Sci. Technol., Vol. 66, pp. 161-172 (2011).
    [16] N. Berguerand and A. Lyngfelt, “Design and operation of a 10 kWth chemical-looping combustor for solid fuels–Testing with South African coal,” Fuel, Vol. 87, pp. 2713-2726 (2008).
    [17] J. Wang and H. Zhao, “Chemical looping dechlorination through adsorbent-decorated Fe2O3/Al2O3 oxygen carriers,” Combust. Flame, Vol. 162, pp. 3503-3515 (2015).
    [18] J. Ma, J. Wang, X. Tian and H. Zhao, “In-situ gasification chemical looping combustion of plastic waste in a semi-continuously operated fluidized bed reactor,” Proc. Combust. Inst., Vol. 37, pp. 4389-4397 (2019).
    [19] S. Jiang, L. Shen, J. Yan, H. Ge and T. Song, “Performance in Coupled Fluidized Beds for Chemical Looping Combustion of CO and Biomass Using Hematite as an Oxygen Carrier,” Energy Fuels, Vol. 32, pp. 12721-12729 (2018).
    [20] W. C. Xu and A. Tomita, “Effect of metal oxides on the secondary reactions of volatiles from coal,” Fuel, Vol. 68, pp. 673-676 (1989).
    [21] G. Rovero, M. Curti and G. Cavaglià, “Optimization of spouted bed scale-up by square-based multiple unit design,” Adv. Chem. Engineer. Sci. (2012).
    [22] A. Thon, M. Kramp, E. U. Hartge, S. Heinrich and J. Werther, “Operational experience with a system of coupled fluidized beds for chemical looping combustion of solid fuels using ilmenite as oxygen carrier,” Appl. Energy, Vol. 118, pp. 309-317 (2014).
    [23] T. Shen, J. Wu, L. Shen, J. Yan and S. Jiang, “Chemical Looping Gasification of Coal in a 5 kWth Interconnected Fluidized Bed with a Two-Stage Fuel Reactor,” Energy Fuels, Vol. 32, pp. 4291-4299 (2017).
    [24] H. Ge, W. Guo, L. Shen, T. Song and J. Xiao, “Biomass gasification using chemical looping in a 25 kWth reactor with natural hematite as oxygen carrier,” Chem. Eng J., Vol. 286, pp. 174-183 (2016).
    [25] G. Wei, F. He, Z. Huang, A. Zheng, K. Zhao and H. Li, “Continuous Operation of a 10 kWth Chemical Looping Integrated Fluidized Bed Reactor for Gasifying Biomass Using an Iron-Based Oxygen Carrier,” Energy Fuels, Vol. 29, pp. 233-241 (2014).
    [26] M. A. Adnan, M. M. Azis, M. R. Quddus and M. M. Hossain, “Integrated liquid fuel based chemical looping combustion – parametric study for efficient power generation and CO2 capture,” Appl. Energy, Vol. 228, pp. 2398-2406 (2018).
    [27] E. R. Monazam, R. W. Breault and R. Siriwardane, “Kinetics of magnetite (Fe3O4) oxidation to hematite (Fe2O3) in air for chemical looping combustion,” Ind. Eng. Chem. Res., Vol. 53, pp. 13320-13328 (2014).
    [28] 蕭清郎、楊銀杉、李庭柱,2008。垃圾高溫氣化再利用技術。行政院環境保護署。

    無法下載圖示 全文公開日期 2024/08/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE