簡易檢索 / 詳目顯示

研究生: 呂宣萱
Hsuan-Hsuan Lu
論文名稱: 鐵-8錳-0.8碳合金鋼內形成麻田散體之臨界錳含量研究
The study of the critical Mn contents in the formation of martensite of an Fe-8Mn-0.8C alloy steel
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 鄭偉鈞
Wei-Chun Cheng
王朝正
Chaur-Jeng Wang
林熾燦
Chi-Can Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 111
中文關鍵詞: 高錳鋼固溶處理深冷處理麻田散體共析溫度
外文關鍵詞: The high manganese steel, Solution treatment, Cryogenic treatment, Martensite, eutectoid temperature
相關次數: 點閱:170下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高錳鋼具有高硬度與高強度的鋼材,也有很強的抗擠壓、抗衝擊以及抗磨損等能力。本論文主要在探討成分為Fe-8 Mn-0.8 C (wt.%)的高錳鋼,於1100℃固溶處理後、固溶處理後再經深冷處理、與經由固溶處理後再於1000至500℃的溫度區間進行恆溫處理後的組成相與其對應的相變化情形。本高錳鋼經1100℃高溫水淬或空冷方式冷卻至室溫的組成相為沃斯田體。將經1100固溶處理水淬後的高錳鋼再進行淬入液態氮的深冷處理,發現其靠近試片邊緣側為麻田散體,靠近中心處為沃斯田體晶粒組織。由此可知於本高錳鋼試片的周圍處形成麻田散體相起始溫度介於零下176℃至室溫間,而本高錳鋼形成麻田散體相起始溫度是低於零下176℃。經1100固溶處理後再經低溫熱處理後,於晶界處有初析碳化物出現,隨著溫度降低,晶界碳化物隨之增加,形貌會從顆粒狀而變成連續晶粒層,且基地內魏德曼組織有增多之趨勢,並有麻田散體組織的形成;由於添加錳元素,推測共析溫度降低至介於600℃與650℃之間,並且在該溫度區間觀察到晶粒內部同時具有麻田散體組織與殘留沃斯田體分佈。波來體析出的鼻部溫度為550℃。


    The high manganese steel has extremely high hardness strength property, impact resistance as well as wear resistance. We studied thigh manganese steel alloy with composition Fe-8Mn-0.8C which was treated by solution treatment at 1100C for 1-hour, cryogenic treatment and isothermal heat treatment in the temperature range of 1000C to 500C after solution treatment. The metallographic microstructure of the samples was studied to explore the effect of temperature and composition on the microstructure, and the resultant phase change. After the solution treatment of the alloy and water or air cooling to room temperature, the metallographic microstructure was preliminarily observed as a single austenite phase. The specimen done by cryogenic treatment after solution treatment and water quenched was found the martensitic phase at the edge and austenite at the center of the specimen. Study of the initial temperature of the phase change of the martensitic dispersion can be presumed between -179C and room temperature or the specimen cooled with liquid nitrogen. The martensite start temperature of high manganese steel in this paper can be under -179C. The carbides precipitates found beside grain boundary after solution treatment at 1100C and isothermal treatment. When the temperature of isothermal getting lower, carbides precipitates increased, and the morphology will change from granular to continuous grain layer. Also, we found the Widmanstätten structures in the base tends to increase and the formation of martensite phase. Due to the addition of manganese, the eutectoid temperature decreased to between 600°C and 650°C, and the grains were observed to have both martensite structure and residual austenite distribution in this temperature range. The nose of the temperature at which the pearlite were precipitated was 550°C.

    目  錄 摘 要 I 英文摘要 II 謝  誌 III 目  錄 IV 圖 目 錄 V 表 目 錄 XIII 第一章 前  言 1 第二章 文獻回顧 3 2.1 擴散型相變化 3 2.2 非擴散型相變化 6 第三章 實驗方法 9 3.1 鐵錳合金鋼的鎔鑄與加工 9 3.2 熱處理 10 3.3 儀器與試片製作 11 第四章 結果與討論 22 4.1 高溫熱處理的相組成與相變化 22 4.2 低溫恆溫處理的相組成與相變化 26 第五章 結 論 90 參考文獻 93    

    參考文獻
    [1] X. J. Liu, S. M. Hao, L. Y. Xu, Y. F. Guo and H. Chen, Experimental study of the phase equilibria in the Fe-Mn-Al system, (1996), 27 (9), 2429-2435.
    [2] D. A. Porter, K. E. Easterling, Phase transformations in metals and alloys (revised reprint), CRC press, (2009).
    [3] 金重勳,“熱處理”,台灣復文興業,第8版 (1998)。
    [4] W. C. H. Robert F. Mehl, The austenite: Pearlite reaction, (1956) 6.
    [5] W. C. Cheng, S. M. Hwang, A Eutectoid Reaction for the Decomposition of Austenite into Pearlitic Lamellae of Ferrite and M23C6 Carbide in a Mn-Al Steel, Metallurgical and Materials Transactions A, (2011) 42: 1960-1966.
    [6] S. A. Hackney, G. J. Shiflet, The pearlite-austenite growth interface in an Fe-0.8 C-12 Mn alloy, Acta Metallurgica, (1987) 35: 1007-1017.
    [7] M. Grujicic, Stabilization of precipitated austenite in tempered Fe-Mn-C steels, Materials Science and Engineering: A, (1990) 127: 79-84.
    [8] D. S. Zhou, G. J. Shiflet, Ferrite: Cementite crystallography in pearlite, Metallurgical Transactions A, (1992) 23: 1259-1269.
    [9] C. R. Hutchinson, G. J. Shiflet, The formation of partitioned pearlite at temperatures above the upper Ae1 in an Fe–C–Mn steel, Scripta Materialia, (2004) 50: 1-5.
    [10] S. A. Hackney, G. J. Shiflet, Interfacial structure at the pearlite: Austenite growth interface in an Fe-0.8C-12Mn steel, Scripta Metallurgica, (1985) 19: 757-762.
    [11] Y. L. Lin, C. P. Chou, M23C6 carbide in an Fe-26.6Mn-8.8Al-0.61C alloy, Scripta Metallurgica et Materialia, (1992) 27: 67-70.
    [12] Z. Nishiyama, Martensitic transformation, Elsevier, 2012.
    [13] T. Y. Hsu, Martensitic transformation under stress, Materials Science and Engineering: A. (2006), 64-68.
    [14] L. Cheng, X. L. Wan, K. M. Wu, Three-dimensional morphology of grain boundary Widmanstätten ferrite in a low carbon low alloy steel, Materials Characterization, (2010) 61: 192-197.
    [15] M. X. Zhang, P. M. Kelly, Crystallography and morphology of Widmanstätten cementite in austenite, Acta Materialia, (1998) 46, 4617-4628.
    [16] W. C. Cheng, J. Chang, Complex Widmanstätten plates consisting of cementite and ferrite, product phases of a eutectoid reaction, in an Fe–C–Mn alloy, Materials Characterization, (2013) 77: 53-62.
    [17] A. Yamanaka, T. Takaki, Y. Tomita, Phase-Field Simulation of Austenite to Ferrite Transformation and Widmanstätten Ferrite Formation in Fe-C Alloy, Materials Transactions, (2006) 47: 2725-2731.
    [18] 張容,“10錳高錳鋼低溫相變化研究”國立台灣科技大學機械工程系研究所,碩士論文(2011)。
    [19] C. Hongbing, T. Y. Hsu, Thermodynamic prediction of MS and driving force for martensitic transformation in Fe-Mn-C alloys, Acta Metallurgica, (1986) 34: 333-338.
    [20] C. Cayron, F. Barcelo, Y. d. Carlan, The mechanisms of the fcc–bcc martensitic transformation revealed by pole figures, Acta Materialia, (2010) 58: 1395-1402.
    [21] H. Y. Chu, F. R. Chen, T. B. Wu, Structural evolution of the aging of martensite in duplex Fe-Mn-Al-C alloy, Scripta Metallurgica et Materialia, (1995) 33: Medium: X; Size: 1269-1275 2009-1212-1216.
    [22] V. T. Witusiewicz, F. Sommer, E. J. Mittemeijer, Reevaluation of the Fe-Mn Phase Diagram, Journal of Phase Equilibria & Diffusion, (2004) 25: 346-354.

    無法下載圖示 全文公開日期 2027/08/01 (校內網路)
    全文公開日期 2027/08/01 (校外網路)
    全文公開日期 2027/08/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE