簡易檢索 / 詳目顯示

研究生: 王志銘
Chih-ming Wang
論文名稱: 馬克-詹德方向耦合器應用於光纖通訊系統中光功率擷取監測與差動相位偏移調變光解調功能
Mach-Zehnder Directional Coupler used in Optic Tap Power Monitoring and Differential Phase Shift Keying (DPSK) Optical Demodulation for Optical Fiber Communications
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 劉政光
Cheng-Kuang Liu
張勝良
Sheng-Lyang Jang
譚昌文
Chen-Wen Tarn
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 105
中文關鍵詞: 馬克-詹德方向耦合器多模干涉器差動相位偏移調變數位電視訊號量測
外文關鍵詞: Differential Phase Shift Keying
相關次數: 點閱:344下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

絕緣層上覆矽(Silicon-on-Insulator, SOI)是近年來廣泛應用在高速且低功耗電子元件,因為具有高折射率係數可大幅縮小元件體積,同時製作方式與互補式金屬氧化物半導體(Complementary Metal Oxide Semiconductor, CMOS)製程相容,有利於光電積體電路的發展。本文研究設計的馬克-詹德方向耦合器(Mach-Zehnder Directional Coupler, MZDC),它是由一段短的延遲長度,在前端與後端加上方向耦合器所組成;馬克-詹德方向耦合器比多模干涉器(Multimode Interference, MMI)有著任意分光率的優點,也可以克服方向耦合器(Directional Coupler, DC)製程容忍度低及波長敏感的缺點。文中將設計不同分光率的馬克-詹德方向耦合器,探討其分光率在C-band (1530~1565nm)的輸出比例是否對波長有不敏感的現象。
數位時代的來臨,視訊廣播由數位式取代傳統類比傳輸方式,我們將數位電視傳輸系統結合現有的被動光網路系統,運用分光比95/5馬克-詹德方向耦合器取代50/50光耦合器以利光電積體電路的整合,其中分光比5%給下行用戶端做觀看;且將分光比95%做為注入鎖模的上行傳輸,並成功將SOI元件應用與光通訊系統中,且並不影響訊號品質與強度。
差動相位偏移調變系統(Differential Phase Shift Keying, DPSK)對雷射的頻譜要求相對低,進而對於色散及偏振模色散(Polarization Mode Dispersion, PMD)的容忍度高,增加傳輸距離。差動相位偏移調變系統接收端與振幅調變系統不同是在為了恢復未編碼前的二進位制數據,需加入一個延遲干涉儀做解調變功能。此延遲干涉儀由多模干涉器和馬克-詹德方向耦合器與延遲100 ps的路徑組成,其中100 ps延遲對應於兩路徑長度差為8689.6 m,也等同於10 Gb/s的調變速率。影響傳輸品質與延遲干涉儀輸出的隔離度(Isolation)特性有關,其主要參數為延遲路徑的光損耗及馬克-詹德方向耦合器的分光率,我們在延遲干涉儀前端使用分光率為50/50的多模干涉器,而後端使用可任意分光的馬克-詹德方向耦合器來優化DPSK的隔離度,實驗數據顯示在1550 nm與1552 nm,其隔離度最大為9 dB。


Silicon-on-insulator (SOI) has been widely utilized in high-speed and low-power electronics these few years due to its high refractive index to significantly reduce the component size and processing compatibility with complementary metal oxide semiconductor (CMOS), which advantages the developing of optoelectronic integrated circuits. Mach-Zehnder directional coupler (MZDC) is composed by two directional couplers connected with a short phase delay length. Compared with the multimode interferometer (MMI), MZDC owns the advantage of any splitting ratio and wavelength independence. In this thesis, different ratios from MZDC will be designed and demonstrated in the wavelength range from 1530 nm to 1565 nm.
In the digital communication applications, the Digital Video Broadcasting replaces traditional analog transmission. We digitized the television transmission system with the existing passive optical network system. Then a SOI based 95/5 splitting ratio MZDC was used to replace the fiber coupler for facilitating the integration of optoelectronic integrated circuits. For downstream signal, a 5% MZDC ratio was routed to the user and 95% was reserved for the upstream transmission, which was illustrated using direct modulated injection locking scheme in thesis. We successfully demonstrated the SOI based MZDC practically applied onto optical communication systems.
Differential Phase Shift Keying (DPSK) modulation system requires relatively low laser spectral quality, and then owns more tolerance for chromatic dispersion and polarization mode dispersion besides the extended transmission distance. Different from the amplitude demodulation, DPSK receiving is constructed by the delayed interferometer.
Using the 100-ps optical phase difference, corresponding to a path difference of 8689.6 μm, and two couplers through the MMI and MZDC, a delayed interferometer demodulator was demonstrated for 10 Gb/s DPSK demodulation. Meanwhile, the characteristic optical isolation from the delayed interferometer output is strongly dependent on the optical propagation loss and MZDC ratios. Because of the tunable laser source tunability, 50/50 ratios from MMI and MZDC were utilized to demonstrate the DPSK isolation as 9 dB only between 1550 to 1552 nm wavelengths.

摘要 Ⅰ Abstract Ⅱ 致謝 Ⅳ 圖目錄 Ⅷ 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 1.3 論文架構 4 第二章 波導理論與馬克-詹德方向耦合器原理 5 2.1 數值分析演算法 5 2.1.1 光束傳播法 5 2.1.2 有效折射率法 7 2.2 脊型波導單多模條件 10 2.3 脊型波導損耗來源 12 2.3.1 耦合損耗 12 2.3.2 波導散射損耗 14 2.3.3 波導彎曲損耗 14 2.4 方向耦合器 18 2.4.1 耦合理論 18 2.4.2 超模(Supermodes) 22 2.4.3 方向耦合器之特性 23 2.5 多模干涉器 25 2.5.1 自我成像原理 25 2.5.2 多模干涉器的干涉機制 27 2.5.3 2x2多模干涉器模擬設計 28 2.6 馬克-詹德干涉儀 31 2.7 馬克-詹德方向耦合器 33 第三章 功率監測系統與DPSK光解調變器 38 3.1 功率監測 38 3.1.1 數位電視地面廣播技術簡介 39 3.1.2 數位機上盒 39 3.1.3 實驗架構 40 3.2 差動相位偏移調變(DPSK)光解調變器 40 3.2.1 差動相位偏移調變(DPSK)發射端 41 3.2.2 差動相位偏移調變(DPSK)接收端 43 3.2.3 理想延遲干涉儀 44 3.2.4 非理想延遲干涉儀 46 第四章 光波導製程 54 4.1 製程流程 54 4.2 RCA Clean 55 4.3黃光製程(微影) 56 4.3.1 HMDS(塗底,Priming) 56 4.3.2 光阻旋轉塗佈(Photoresist Coating) 58 4.3.3 軟烤(Soft Bake) 59 4.3.4 曝光(exposure) 60 4.3.5 硬烤(Hard Bake) 60 4.3.6 實驗參數 61 4.4蝕刻製程 61 4.4.1 複晶矽-活性離子蝕刻機(Poly-Si RIE)機台介紹 62 4.4.2 等向性與非等向性 62 4.4.3 壓力大小 63 4.4.4 RF功率 64 4.4.5 實驗參數 64 4.5 晶圓切割與研磨 65 4.6 製程的結果 66 第五章 量測結果 67 5.1 馬克-詹德方向耦合器量測分析 67 5.2 功率監測量測分析 79 5.3 差動相位偏移調變(DPSK)光解調變器量測分析 82 第六章 結論論與未來展望 89 參考文獻 90

[1] K. Jinguji, N. Takato, A. Sugita, M. Kawachi,“Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,”Electronics Letters, Vol. 26, pp. 1326-1327, 1990.
[2] B. E. Little, T. Murphy,“Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,”IEEE Photonics Technology Letters, Vol. 9, pp. 1607-1609, 1997.
[3] S. H. Hsu,“Signal power tapped with low polarization dependence and insensitive wavelength on SOI platforms,”Journal of the Optical Society of America B, 27(5), pp. 941-947, 2010.
[4] S. H. Hsu,“Optical waveguide tap with low polarization dependence and flattened wavelength using Mach-Zehnder directional coupler,” Applied Optics, 49(13), pp. 2434-2440, 2010.
[5] L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,”Optics Communications, Vol. 210, pp. 43-49, 2002.
[6] D. X. Xu, W. N. Ye, S. Janz, A. Delage, P. Cheben, B. Lamontagne, E. Post, P. Waldron,“Stress induced effects for advanced polarization control in silicon photonics components,”Advances in Optical Technologies, Vol. 2008, 2008.
[7] R. A. Soref, J. Schmidtchen, K. Petermann,“Large single mode RIB waveguides in GeSi-Si and Si-on-SiO2,”IEEE Journal of Selected Topics in Quantum Electronics, Vol. 27, No. 8. 1991.
[8] S. Pogossian, L. Vescan, A. Vonsovici,“The single-mode condition for semiconductor rib waveguides with large cross section,”Journal of Lightwave Technology, Vol. 16, pp. 1851-1853, 1998.
[9] N. Dagli, C.G. Fonstad,“Analysis of rib dielectric Waveguide,”IEEE Journal of Quantum Electronics, Vol. QE-21, pp. 315-321, 1985.
[10] O. Powell,“Single-mode condition for silicon rib waveguides,”Journal of Lightwave Technology, Vol. 20, pp. 1851-1855, 2002.
[11] S. H. Hsu,“A 5μm-thick SOI waveguide with low birefringence and low roughness and optical interconnection using high numerical aperture fiber,” IEEE Photonics Technology Letters, Vol. 20, pp. 1003-1005, 2008.
[12] BeamPROP, Rsoft Design Group, Inc.
[13] M. Heiblum, J. Harris,“Analysis of curved optical waveguides by conformal transformation,”IEEE Quantum Electronics, Vol. 11, No. 2, pp. 75-83, 1975.
[14] M. D. Feit, J. A. Fleck,“Light propagation in graded-index optical fibers,”Appl. Opt. 17, pp. 3990-3998, 1978.
[15] A. Yariv, P. Yeh,“Photonics: Optical Electronics in Modern Communications,”Oxford, pp. 611-614, 2007.
[16] A. H. Gnauck, P. J. Winzer,“Optical phase-shift-keyed transmission,”J. Lightwave Technol. 23, pp. 115-130, 2005.
[17] C. Wu, X. Liu, X. Wei,“Differential phase-shift keying for high spectral efficiency optical transmissions,”IEEE Selected Topics in Quantum Electronics, Vol. 10, No. 2, pp. 281- 293, 2004.
[18] K. Okamoto,“Fundamental of optical waveguides,”Academic Press, 2000
[19] 蔡祐立,單一絕緣層覆矽基板上之多模干涉與方向耦合功能為主的分光功率器,碩士論文,台灣科技大學,民國97年。
[20] 黃信誠, DPSK光解調變器特性探討, 碩士論文, 台灣科技大學, 民國100 年。
[21] 黃浚銘, 相容互補金屬氧化半導體製程用於矽光電元件技術之研發, 碩士論文, 台灣科技大學, 民國97年。
[22] 楊金成,吳政三,柯富祥,“TEL MK-8自動化阻劑旋轉塗佈及顯影系統介紹,”國家奈米元件實驗室-奈米通訊期刊第八卷第一期, pp.41-49.
[23] T. Miyamoto,“Numerical analysis of a rib optical waveguide with trapezoidal cross section,”Optics Communications, Vol. 34, pp. 35-38, 1980.
[24] W. Qin, D. Fang,“Modal analysis of a rib optical waveguide with trapezoidal cross section by variable transformed Galerkin method,”Computational Electromagnetics and Its Applications, 1999. Proceedings. (ICCEA '99) 1999 International Conference on, pp. 82-85, 1999.
[25] D. F. Clark, I. Dunlop,“Method for analysing trapezoidal optical waveguides by an equivalent rectangular rib waveguide,”Electronics Letters, Vol. 24, pp. 1414-1415, 1988.
[26] P. M. Pelosi, P. Vandenbulcke, C. D. W. Wilkinson, and R. M. De La Rue, “Propagation characteristics of trapezoidal cross-section ridge optical waveguides: an experimental and theoretical investigation,”Appl. Opt., Vol. 17, pp. 1187-1193, 1978.
[27] 林晁磊,低成本法布里-比洛雷射二極體光注入自動鎖模監控系統研究,碩士論文,民國101年。
[28] 游輝智,光學低同調干涉技術系統的建構與應用,碩士論文,國立台灣科技大學,民國九十八年。
[29] 徐榕辰,光纖感測於微應變之應用與研究,碩士論文,國立台灣科技大學,民國101年。
[30] S. Grigoropoulos, E. Gogolides, A. D. Tserepi, A. G. Nassiopoulos,“Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases,”J. Vac. Sci. Technol. Vol. 15(3), pp. 640-645, 1997.
[31] J. M. Liu,“Phonics device,”Cambridge University Press, pp206-207, 2005.
[32] W. N. Ye, D. X. Xu, S. Janz, P. Cheben, M. J. Picard, B. Lamontagne, N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,”Journal of Lightwave Technology, Vol. 23, No. 3, 2005.
[33] M. Huang,“Stress effects on the performance of optical waveguides,” International Journal of Solids and Structures, Vol. 40, pp. 1615-1632, 2003.
[34] W. R. Headley, G. T. Reed, S. Howe,“Polarization-independent optical racetrack resonators using rib waveguide on silicon-on-insulator,”Applied Physics Letters, Vol. 85, No. 23, 2004.
[35] H. S. Kim, T. L. Lee, G. Y. Oh, D. G. Kim, Y. W. Choi,“Analysis of polarization characteristics based on asymmetric metal-clad optical waveguides with buffer layer,”IEEE Conference of Numerical Simulation of Optoelectronic Devices, pp. 35-36, 2011.
[36] G. Ducournau, O. Latry, M. Ketata,“The All-fiber MZI structure for optical DPSK demodulation and optical PSBT encoding,”Systemics,Cybernetics and Informatics, Vol. 4, No 4, pp. 78-89, 2006
[37] S. H. Hsu, C. Y. Tsou, M. S. Hsieh, C. Y. Lin, “Low-coherence interferometric fiber sensor with improved resolution using stepper motor assisted optical ruler,” Optical Fiber Technology, Vol. 19, No 3, pp. 223-226, 2013.

無法下載圖示 全文公開日期 2018/07/09 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE