簡易檢索 / 詳目顯示

研究生: 李曜愷
Yao-Kai Li
論文名稱: 以離子束蝕刻形成奈米波紋之矽基板成長氧化鋅奈米粒子
Growth of ZnO nanoparticles on Si substrate with ion-induced nanoscale ripple
指導教授: 趙良君
Liang -Chiun Chao
口試委員: 黃鶯聲
Ying-Sheng Huang
李奎毅
Kuei-yi Lee
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 73
中文關鍵詞: 氧化鋅奈米粒子
外文關鍵詞: ZnO, nanoparticles
相關次數: 點閱:383下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文藉由改變離子束轟擊角度,使Si (100) 基板表面產生不同波長之波紋形貌;使用反應式離子束濺鍍法成長氧化鋅奈米粒子,經由改變成長時間、基板溫度,討論最佳奈米粒子成長參數;最後將奈米粒子分別沉積在不同轟擊角度之基板,觀察奈米粒子的分佈情況;在光學量測方面,在奈米粒子上覆蓋保護層,討論不同沉積時間對奈米粒子光學影響。在離子束轟擊角度為30°時,有最大波長為314 nm,隨著轟擊角度增加波長有下降的趨勢。成長奈米粒子在不同基板溫度條件下,可發現基板溫度由200℃上升至300℃,其奈米粒子高度由2.4 nm下降至1.7 nm,在基板溫度250℃時,奈米粒子的直徑有最小值約為22.9 nm。改變沉積時間條件下,奈米粒子尺寸會隨著沉積時間增加而上升。沉積奈米粒子在轟擊角度為60°基板,其波紋之形貌較為陡峭,奈米粒子會分佈在波紋的波峰上;而沉積在轟擊角度為40°基板,其波紋之形貌較為平緩,導致奈米粒子分佈與表面形貌較沒有關係。量測不同沉積時間的奈米粒子之樣品,可以發現PL譜線近能隙發光位置,隨著奈米粒子尺寸增加,而使得量子侷限效應下降,產生紅移的現象,PL譜線之半高寬也隨著沉積時間上升而下降,由於沉積時間上升導致奈米粒子尺寸較為一致所造成。


Quasi periodic nanoripples on Si(100) substrates with spatial wavelength  from 314 to 85 nm were prepared by ion beam sputtering utilizing ion beam incident angles from 30˚ to 60˚. ZnO nanoparticles with diameters from 15 ~ 25 nm and height of 3 nm were successfully deposited on ion-beam textured Si substrates by reactive ion beam sputter deposition. As the deposition temperature increases from 200 to 300˚C, the height of ZnO nanoparticle decreases from 2.4 to 1.7 nm. Increasing deposition time causes increase of ZnO nanoparticle diameter. Evenly distributed ZnO nanoparticles were found on Si substrates with  = 249 nm, while on substrates with  = 85 nm, ZnO nanoparticles were preferentially located on the crest of the quasi-periodic structures. Nanoparticles preferentially accumulation where the slope is minimized on the growth surface. As the ZnO nanoparticle diameter increases from 15 to 25 nm, room temperature near-band-edge photoluminescence emission energy decreases from 3.38 to 3.30 eV, which is due to size dependent quantum confinement effect.

論 文 摘 要 I Abstract II 致謝 III 圖目錄 V 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 研究理論與文獻回顧 3 2.1 波紋結構 3 2.2 量子點 5 2.2.1量子點成長理論 7 2.2.2量子點量測 8 2.2.3控制量子點密度 18 2.2.4 量子點應用 29 第三章 實驗與分析 33 3.1 實驗設備及流程 33 3.2 特性分析儀器 37 3.2.1 場發射掃描式電子顯微鏡 37 3.2.2 原子力顯微鏡 37 3.2.3 光激發螢光 39 第四章 實驗結果與討論 41 4.1 波紋結構 41 4.2 成長氧化鋅奈米粒子 46 4.3 成長氧化鋅奈米粒子在不同基板上 52 4.4 奈米粒子之光學量測 56 第五章 結論與未來展望 65 參考文獻 67

[1] S. W. Kim, T. Kotani, M. Ueda, S. Fujita and S. Fujita, “Selective growth of ZnO nanodots prepared by metalorganic chemical vapor deposition on focused-ion beam-nanopatterned substrates,” Physica E, Vol. 21, pp. 601-604, 2004.
[2] K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle and G. Weimann, “ Photoluminescence from a single GaAs/AlGaAs quantum dot,” Phys. Rev. Lett., Vol. 69, pp. 3216-3219, 1992.
[3] R. M. Bradley and J. M. E. Harper, “Ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A, Vol. 6, pp. 2390-2096, 1988.
[4] U. Valbusa, C. Boragno and F. Mongeot, “Nanostructuring surfaces by ion sputtering,” J. Phys. Condens. Matter, Vol. 14, pp. 8153-8175, 2002.
[5] T. K. Chini, M. K. Sanyal and S. R. Bhattacharyya, “Energy-dependent wavelength of the ion-induced nanoscale ripple,” Phys. Rev. B, Vol. 66, pp. 153404-1-153404-4, 2002.
[6] E. Chason, T. M. Mayer, B. K. Kellerman, D. T. McIlroy and A. J. Howard, “Roughening instability and evolution of the Ge(001) surface during ion sputtering,” Phys. Rev. Lett., Vol. 72, pp. 3040-3043, 1994.
[7] M. Navez, C. Sella and D. Chaperot, “Etude de l’attaque du verre par bombardement ionique,” Acad. Sci., Vol. 254, pp. 240-248, 1962.
[8] G. Gottschalk, Th. Fries, C. Becker and K. Wandelt, “Topography of sputtered Si(100) surfaces studied by STM in air,” Ultramicroscopy, Vol. 42, pp. 1376-1380, 1992.
[9] S. Habenicht, W. Bolse, K. P. Lieb, K. Remann and U. Geyer, “Nanometer ripple formation and self-affine roughening of ion-beam-eroded graphite surfaces,” Phys. Rev. B, Vol. 60, pp. R2200-R2203, 1999.
[10] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett., Vol. 40, pp. 939-941, 1982.
[11] S. Barik, A. K. Srivastava, P. Misra, R. V. Nandedkar and L. M. Kukreja, “Alumina capped ZnO quantum dots multilayer grown by pulsed laser deposition,” Solid State Commun., Vol. 127, pp. 463-467, 2003.
[12] V. A. Fonoberov and A. A. Balandin, “ZnO quantum dots: Physical properties and optoelectronic applications,” J. Nanoelectron. Optoelectron., Vol. 1, pp. 19-38, 2006.
[13] A. P. Alivisatos, “Perspectives on the physical chemistry of semiconductor nanocrystals,” J. Phys. Chem., Vol. 100, pp. 13226-13239, 1996.
[14] N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin. P. S. Kop’ev, Zh. I. Alferov and D. Bimberg, “Quantum dot heterostructures: fabrication, properties, lasers,” J. Semicond., Vol. 32, pp. 343-365, 1998.
[15] K. F. Lin, H. M. Cheng, H. C. Hsu and W. F. Hsieh, “Band gap engineering and spatial confinement of optical phonon in ZnO quantum dots,” Appl. Phys. Lett., Vol. 88, pp. 263117-1-263117-3, 2006.
[16] J. G. Lu, Z. Z. Ye, Y. Z. Zhang and Q. L. Liang, “Self-assembled ZnO quantum dots with tunable optical properties,” Appl. Phys. Lett., Vol. 89, pp. 023122-1- 023122-3, 2006.
[17] L. Yang, J. Yang, X. Liu, Y. Zhang, Y. Wang, H. Fan, D. Wang and J. Lang, “Low-temperature synthesis and characterization of ZnO quantum dots,” J. Alloys Compd., Vol. 463, pp. 92-95, 2008.
[18] L. E. Brus, “Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys., Vol. 80, pp. 4403-4409, 1984.
[19] K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin and W. F. Hsieh, “Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method,” Chem. Phys. Lett., Vol. 409, pp. 208-211, 2005.
[20] H. Z. Wu, D. J. Qiua, Y. J. Cai, X. L. Xu and N. B. Chen, “Optical studies of ZnO quantum dots grown on Si (0 0 1),” J. Cryst. Growth., Vol. 245, pp. 50-55, 2002.
[21] X. H. Zhang, S. J. Chua, A. M. Yong, S. Y. Chow, H. Y. Yang, S. P. Lau and S. F. Yu, “Exciton radiative lifetime in ZnO quantum dots embedded in SiOx matrix,” Appl. Phys. Lett., Vol. 88, pp. 221903-1-221903-3, 2006.
[22] V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu and J. Liu, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals,” Phys. Rev. B, Vol. 73, pp. 165317-1-165317-9, 2006.
[23] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica, Vol. 34, pp. 149-154, 1967.
[24] W. T. Hsu, K. F. Lin and W.F. Hsieh, “Reducing exciton-longitudinal-optical phonon interaction with shrinking ZnO quantum dots,” Appl. Phys. Lett., Vol. 91, pp. 181913-1-181913-3, 2007.
[25] S. Facsko, T. Dekorsy, C. Trappe and H. Kurz, “Self-organized quantum dot formation by ion sputtering,” Microelectron. Eng., Vol. 53, pp. 245-248, 2000.
[26] S. Facsko, T. Bobek, T. Dekorsy and H. Kurz, “Ordered quantum dot formation by ion sputtering,” Phys. Status Solidi B, Vol. 224, pp. 537-540, 2001.
[27] J. Lefebvre, P. J. Poole, J. Fraser, G. C. Aers, D. Chithrani and R. L. Williams, “Self-assembled InAs quantum dots on InP nano-templates,” J. Cryst. Growth, Vol. 234, pp. 391-398, 2002.
[28] D. S. L. Mui, D. Leonard, L. A. Coldren and P. M. Petroff, “Surface migration induced self-aligned InAs islands grown by molecular beam epitaxy,” Appl. Phys. Lett., Vol. 66, pp. 1620-1622, 1995.
[29] H. Lee, J. A. Johnson, J. S. Speck and P. M. Petroff, “Controlled ordering and positioning of InAs self-assembled quantum dots,” J. Vac. Sci. Technol. B, Vol. 18, pp. 2193-2196, 2000.
[30] C. K. Hyon, S. C. Choi, S. H. Song, S. W. Hwang, M. H. Son, D. Ahn, Y. J. Park and E. K. Kim, “Application of atomic-force-microscope direct patterning to selective
positioning of InAs quantum dots on GaAs,” Appl. Phys. Lett., Vol. 77, pp. 2607-2609, 2000.
[31] M. Kitamura, M. Nishioka, J. Oshinowo and Y. Arakawa, “In situ fabrication of self-aligned InGaAs quantum dots on GaAs multiatomic steps by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 66, pp. 3663-3665, 1995.
[32] J. Brault, S. Tanaka, E. Sarigiannidou, J. -L. Rouviere, B. Daudin, G. Feuillet and H. Nakagawa, “Linear alignment of GaN quantum dots on AlN grown on vicinal SiC substrates,” Appl. Phys. Lett., Vol. 93, pp. 3108-3110, 2003.
[33] G. Li, J. Zhang, L. Yang, Y. Zhang and L. Zhang, “Growth of GaAs quamtum dots on Si substrate with artificial topography by ion sputtering,” Scr. Mater., Vol. 44, pp. 1945-1948, 2001.
[34] L. Zhuang, L. Guo and S. Y. Chou, “Silicon single-electron quantum-dot transistor switch operating at room temperature,” Appl. Phys. Lett., Vol. 72, pp. 1205-1207, 1998.
[35] 張守進、劉醇星、姬梁文,「半導體雷射」,科學發展,第349期,第14-21頁,2002年。
[36] N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Zh. I. Alferov, U. Richter, P. Werener and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett., Vol. 30, pp. 1416-1417, 1994.
[37] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys., Vol. 79, pp. 7983-7989, 1996.
[38] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., Vol. 98, pp. 041301-1-041301-103, 2005.
[39] L. Zhang, L. Yin, C. Wang, N. Lun, Y. Qi and D. Xiang, “Origin of visible photoluminescence of ZnO quantum dots: defect-dependent and size-dependent” J. Phys. Chem. C, Vol. 114, pp. 9651-9658, 2010.
[40] C. L. Yang, J. N. Wang, W. K. Ge, L. Guo, S. H. Yang and D. Z. Shen, “Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots,” J. Appl. Phys., Vol. 90, pp. 4489-4493, 2001.
[41] J. G. Lu, Z. Z. Ye, J. Y. Huang, L. P. Zhu, B. H. Zhao, Sz. Fujita and Z. L. Wang, “ZnO quantum dots synthesized by a vapor phase transport process,” Appl. Phys. Lett., Vol. 88, pp. 063110-1-063110-3, 2006.
[42] L. Fan, H. Song, L. Yu, Z. Liu, L. Yang, G. Pan, X. Bai, Y. Lei, T. Wang, Z. Zheng and X. Kong, “Hydrothermal synthesis and photoluminescent properties of ZnO sub-micrometer and micrometer rods,” Opt. Mater., Vol. 29, pp. 532-538, 2007.

QR CODE