簡易檢索 / 詳目顯示

研究生: 林佳諭
Jia-Yu Lin
論文名稱: 添加二氧化鈦生物活性玻璃對生物活性及機械性質之影響
Influence of adding TiO2 on the mechanical and bioactive properties for bioactive glass
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 段維新
Wei-Hsing Tuan
顏怡文
Yee-Wen Yen
陳錦毅
Chin-Yi Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 101
中文關鍵詞: 生物活性玻璃噴霧乾燥法二氧化鈦抗彎曲強度
外文關鍵詞: bioactive glass, Spray drying, TiO2, flexural strength
相關次數: 點閱:270下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

骨移植和骨替代材常用於支撐和幫助骨癒合,2015年,骨移植和骨替代材市場的價值為24.43億美元,預計到2022年將達到33.97億美元,生物活性玻璃(BG)在骨植入中的應用因為有良好的生物活性、生物相容性及骨傳導性,受到生物學家和工程師的大量關注。
生物活性玻璃被廣泛應用在玻璃陶瓷及骨科上,但生物活性玻璃有一個缺點是其機械性質過低,為了提升機械性質,本研究分別添加0、1、5、10 及 15wt% 異丙醇鈦合成 TiO2-doped 58S BG。
傳統的玻璃製程和溶膠-凝膠法是製造BG的常用方法,並且已經用於生產BG多年。但是,它們都有生產BG的一些缺點。因此,本研究提出了一種噴霧乾燥法(Spray Drying, SD)來克服這些缺點。 利用SD方法基於Si,Ca和P 系統的58S BG前驅物並掺雜不同重量比例之TiO2合成了0、1、5、10、15wt% TiO2-doped 58S BG。
製備好之0、1、5、10、15wt% TiO2-doped 58S BG粉體,及壓製成為塊材並燒結。最後再針對商品NovaBone® 與 TiO2-doped 58S BG進行分析,並做抗彎曲強度進行比較。


Bone graft and substitutes are used to provide structural support and enhance bone healing. Bone Grafts and Substitutes Market was valued at $2,443 million in 2015, and is expected to reach $3,397 million by 2022. Bioactive glasses have been widely investigated for bone implants due to the outstanding bioactivity, biocompatibility and Osteoconductivity. BG have received lots of attention from biologists and engineers.
Bioactive glasses have been used to develop numerous materials such as glass–ceramic scaffolds for orthopedic applications. In order to improve the mechanical reliability of BG. The addition of elements ,titanium, may be used.
The conventional glass process and sol–gel process are popular methods for fabricating BGs, and have been used to produce BGs for years. However, they have some disadvantages of producing BGs. This study presented a spray drying (SD) method to overcome these disadvantages. The Si-Ca- P system bioactive glass, 0, 1, 5, 10, 15wt% TiO2-doped 58S BG, were successfully prepared.
The purpose of this work is to provide information on bioactivity assessment and to increase the flexural strength of 58S BG by introducing 1, 5, 10, 15wt% TiO2 into it, and finally, compare with NovaBone®.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 IX 表目錄 XIII 第一章、緒論 1 1.1 研究背景 1 第二章、文獻回顧 3 2.1 人體骨骼 3 2.1.1 人體骨骼之簡介 3 2.1.2 人體骨骼之組成 3 2.1.3 骨骼結構 5 2.1.4 骨骼成分 8 2.1.5骨骼的代謝 8 2.1.6骨折 10 2.1.7 骨骼癒合 11 2.2 生醫材料簡介 14 2.2.1 生醫材料之定義 14 2.2.2生醫材料之要求 14 2.2.3. 生物相容性 15 2.2.4生醫材料之分類 17 2.2.5 骨填充材 19 2.2.6生醫陶瓷 22 2.2.7生物活性玻璃 23 2.2.7 生物陶瓷之機械性質 26 2.4 噴霧乾燥法 31 2.4.1 噴霧乾燥法簡介 31 2.4.2 前驅物溶液之配製 32 第三章、實驗步驟 36 3.1 實驗設計及其目的 36 3.2實驗藥品 38 3.3實驗儀器設備 39 3.4樣品製備之步驟 40 3.4.1生物活性玻璃粉體之製備與收集 40 3.5 樣品性質及分析方法 41 3.5.1 X光繞射儀 41 3.5.2場發射雙束型聚焦離子束顯微鏡 42 3.5.3氮氣吸/脫附分析儀 44 3.5.4塊材密度量測 44 3.5.5生物相容性 45 3.5.6體外生物活性評估 47 3.5.7四點抗彎曲試驗 48 第四章、實驗結果 49 4.1 BG之合成及分析 49 4.2商品 NovaBone® 性質分析 49 4.2.1 NovaBone® 之相結構分析 49 4.2.2 場發射雙束型聚焦離子束顯微鏡表面形貌分析 51 4.2.3 NovaBone®之生物活性測試 52 4.2.3.1 X光繞射晶相鑑定分析 52 4.2.3.2 場發射雙束型聚焦離子束顯微鏡表面形貌分析 53 4.3.3.3 NovaBone®之細胞毒性測試 54 4.3生物活性玻璃粉體之性質分析 56 4.3.1 X光繞射晶相鑑定分析 56 4.3.2 場發射雙束型聚焦離子束顯微鏡表面形貌分析 57 4.3.3 氮氣吸/脫附分析 60 4.4生物活性玻璃粉體之生物活性評估 61 4.4.1 X光繞射表面晶相鑑定分析 61 4.4.2 場發射雙束型聚焦離子束顯微鏡表面形貌分析 62 4.5生物活性玻璃塊材之性質分析 64 4.5.1 X光繞射晶相鑑定分析 64 4.5.2 塊材截面場發射雙束型聚焦離子束顯微鏡表面形貌分析 66 4.5.3 細胞毒性測試 68 4.5.4 阿基米德浮力原理密度分析 69 4.5.5四點抗彎曲強度分析 70 4.6生物活性玻璃塊材之生物活性評估 72 4.6.1 X光繞射晶相鑑定分析 72 4.6.2 場發射雙束型聚焦離子束顯微鏡表面形貌分析 73 第五章、討論 75 5.1粉體形貌 75 5.2 孔隙率與密度之影響 76 5.3 密度與抗彎強度 78 第六章、結論 79 第七章、未來工作 80 參考文獻 81

[1] S. Mays, The archaeology of human bones, Routledge2010.
[2] J. Kanis, Osteoporosis. Osney Mead, Blackwell Science Ltd, Oxford, UK Google Scholar, 1994.
[3] D. Shier, J. Butler, R. Lewis, Human anatomy and physiology, McGraw-Hill Boston, MA, USA2001.
[4] J. Aerssens, S. Boonen, G. Lowet, J. Dequeker, Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research, Endocrinology, 139 (1998) 663-670.
[5] K. Rezwan, Q. Chen, J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, 27 (2006) 3413-3431.
[6] W. Wang, K.W. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: A review, Bioactive materials, (2017).
[7] F. Epstein, Bone marrow, cytokine and bone remodeling, Eng. J. Med, k332, (1995) 251-263.
[8] A.C. Guyton, J.E. Hall, Human physiology and mechanisms of disease, (1992).
[9] H. Schell, G. Duda, A. Peters, S. Tsitsilonis, K. Johnson, K. Schmidt-Bleek, The haematoma and its role in bone healing, Journal of experimental orthopaedics, 4 (2017) 5.
[10] T.A. Einhorn, L.C. Gerstenfeld, Fracture healing: mechanisms and interventions, Nature Reviews Rheumatology, 11 (2015) 45.
[11] J.B. Park, Biomaterials science and engineering, Springer Science & Business Media2012.
[12] M. Black, R. Van Noort, P. Drury, Medical applications of biomaterials, Physics in Technology, 13 (1982) 50.
[13] H. Klinkmann, H. Wolf, E. Schmit, Haemodialysis and membrane biocompatibility, Contr Nephrol, 37 (1984) 70-77.
[14] J.M. Anderson, J.J. Langone, Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems1, Journal of controlled release, 57 (1999) 107-113.
[15] J. Woodman, J. Jacobs, J. Galante, R. Urban, Metal ion release from titanium‐based prosthetic segmental replacements of long bones in baboons: A long‐term study, Journal of Orthopaedic Research, 1 (1983) 421-430.
[16] P. Ducheyne, K.E. Healy, The effect of plasma‐sprayed calcium phosphate ceramic coatings on the metal ion release from porous titanium and cobalt‐chromium alloys, Journal of biomedical materials research, 22 (1988) 1137-1163.
[17] J. Quinn, G. D QUINN, Indentation brittleness of ceramics: a fresh approach, Journal of Materials Science, 32 (1997) 4331-4346.
[18] S. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas, Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders, Biomaterials, 23 (2002) 1065-1072.
[19] M. Mazzocchi, D. Gardini, P.L. Traverso, M.G. Faga, A. Bellosi, On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part II: chemical stability and wear resistance in body environment, Journal of Materials Science: Materials in Medicine, 19 (2008) 2889.
[20] Y. Chen, X. Miao, Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents, Biomaterials, 26 (2005) 1205-1210.
[21] J.L. West, J.A. Hubbell, Polymeric biomaterials with degradation sites for proteases involved in cell migration, Macromolecules, 32 (1999) 241-244.
[22] J.C. Vidal, E. Garcı́a, J.R. Castillo, In situ preparation of a cholesterol biosensor: entrapment of cholesterol oxidase in an overoxidized polypyrrole film electrodeposited in a flow system: determination of total cholesterol in serum, Analytica chimica acta, 385 (1999) 213-222.
[23] L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials, Progress in polymer science, 32 (2007) 762-798.
[24] G. Wei, P.X. Ma, Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering, Biomaterials, 25 (2004) 4749-4757.
[25] N. Ignjatović, S. Tomić, M. Dakić, M. Miljković, M. Plavšić, D. Uskoković, Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials, Biomaterials, 20 (1999) 809-816.
[26] G. Daculsi, New technology for calcium phosphate bioactive ceramics in bone repair, Proc. EMBEC, 1999, pp. 1598-1599.
[27] C.B. Portmann-Lanz, A. Schoeberlein, A. Huber, R. Sager, A. Malek, W. Holzgreve, D.V. Surbek, Placental mesenchymal stem cells as potential autologous graft for pre-and perinatal neuroregeneration, American journal of obstetrics and gynecology, 194 (2006) 664-673.
[28] B.J. Nankivell, R.J. Borrows, C.L.-S. Fung, P.J. O'connell, R.D. Allen, J.R. Chapman, The natural history of chronic allograft nephropathy, New England Journal of Medicine, 349 (2003) 2326-2333.
[29] S. Kitagawa, H. Iwata, S. Sato, J. Shimizu, T. Hamaoka, H. Fujiwara, Heterogenous graft rejection pathways in class I major histocompatibility complex-disparate combinations and their differential susceptibility to immunomodulation induced by intravenous presensitization with relevant alloantigens, Journal of Experimental Medicine, 174 (1991) 571-581.
[30] T.-J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, X. Zhang, Terahertz magnetic response from artificial materials, Science, 303 (2004) 1494-1496.
[31] L.L. Hench, The story of Bioglass®, Journal of Materials Science: Materials in Medicine, 17 (2006) 967-978.
[32] A. Rámila, B. Munoz, J. Pérez-Pariente, M. Vallet-Regí, Mesoporous MCM-41 as drug host system, Journal of sol-gel science and technology, 26 (2003) 1199-1202.
[33] M. Vallet‐Regí, Nanostructured mesoporous silica matrices in nanomedicine, Journal of internal medicine, 267 (2010) 22-43.
[34] P. Valerio, M.M. Pereira, A.M. Goes, M.F. Leite, The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production, Biomaterials, 25 (2004) 2941-2948.
[35] L.L. Hench, R.J. Splinter, W. Allen, T. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of biomedical materials research, 5 (1971) 117-141.
[36] E.M. Carlisle, Silicon: a requirement in bone formation independent of vitamin D 1, Calcified tissue international, 33 (1981) 27-34.
[37] E.M. Carlisle, Silicon: a possible factor in bone calcification, Science, 167 (1970) 279-280.
[38] J. Damen, J. Ten Cate, Silica-induced precipitation of calcium phosphate in the presence of inhibitors of hydroxyapatite formation, Journal of dental Research, 71 (1992) 453-457.
[39] S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi, J. Tanaka, The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture, Biomaterials, 26 (2005) 4847-4855.
[40] M. Julien, S. Khoshniat, A. Lacreusette, M. Gatius, A. Bozec, E.F. Wagner, Y. Wittrant, M. Masson, P. Weiss, L. Beck, Phosphate‐dependent regulation of MGP in osteoblasts: Role of ERK1/2 and Fra‐1, Journal of Bone and Mineral Research, 24 (2009) 1856-1868.
[41] P.D. Saltman, L.G. Strause, The role of trace minerals in osteoporosis, Journal of the American College of Nutrition, 12 (1993) 384-389.
[42] D. Arcos, D. Greenspan, M. Vallet‐Regí, A new quantitative method to evaluate the in vitro bioactivity of melt and sol‐gel‐derived silicate glasses, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 65 (2003) 344-351.
[43] R. Jugdaohsingh, K.L. Tucker, N. Qiao, L.A. Cupples, D.P. Kiel, J.J. Powell, Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort, Journal of Bone and Mineral Research, 19 (2004) 297-307.
[44] M. Yamaguchi, Role of zinc in bone formation and bone resorption, The Journal of Trace Elements in Experimental Medicine: The Official Publication of the International Society for Trace Element Research in Humans, 11 (1998) 119-135.
[45] Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Uchida, T. Kubo, Y. Akagawa, Y. Hamada, J. Takahashi, N. Matsuura, Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 62 (2002) 99-105.
[46] T. Uysal, A. Ustdal, M.F. Sonmez, F. Ozturk, Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits, The Angle Orthodontist, 79 (2009) 984-990.
[47] Q. Fu, E. Saiz, M.N. Rahaman, A.P. Tomsia, Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives, Materials Science and Engineering: C, 31 (2011) 1245-1256.
[48] M.F. Ashby, D. Cebon, Materials selection in mechanical design, Le Journal de Physique IV, 3 (1993) C7-1-C7-9.
[49] D. Grigoratos, J. Knowles, Y.L. Ng, K. Gulabivala, Effect of exposing dentine to sodium hypochlorite and calcium hydroxide on its flexural strength and elastic modulus, International endodontic journal, 34 (2001) 113-119.
[50] R. Vehring, Pharmaceutical particle engineering via spray drying, Pharmaceutical research, 25 (2008) 999-1022.
[51] A.B.D. Nandiyanto, K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges, Advanced Powder Technology, 22 (2011) 1-19.
[52] R. Li, A. Clark, L. Hench, An investigation of bioactive glass powders by sol‐gel processing, Journal of Applied Biomaterials, 2 (1991) 231-239.
[53] C. Kittel, P. McEuen, P. McEuen, Introduction to solid state physics, Wiley New York1996.
[54] A. Posner, E. Eanes, R. Harper, I. Zipkin, X-ray diffraction analysis of the effect of fluoride on human bone apatite, Archives of Oral Biology, 8 (1963) 549-570.
[55] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3, Journal of biomedical materials research, 24 (1990) 721-734.
[56] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27 (2006) 2907-2915.
[57] L.M. Placek, T.J. Keenan, Y. Li, C. Yatongchai, D. Pradhan, D. Boyd, N.P. Mellott, A.W. Wren, Investigating the effect of T i O 2 on the structure and biocompatibility of bioactive glass, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104 (2016) 1703-1712.
[58] A.W. Wren, A. Coughlan, C.M. Smith, S.P. Hudson, F.R. Laffir, M.R. Towler, Investigating the solubility and cytocompatibility of CaO–Na2O–SiO2/TiO2 bioactive glasses, Journal of Biomedical Materials Research Part A, 103 (2015) 709-720.

QR CODE