簡易檢索 / 詳目顯示

研究生: 賴英澤
Ying-tse Lai
論文名稱: 被動光網路監測技術改良之研究
Study on Monitoring-Improved Technologies of Passive Optical Networks (PONs)
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 張嘉男
Chia-Nan Chang
黃振發
Jen-Fa Huang
王立康
Li-Karn Wang
呂海涵
Hai-Han Lu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 85
中文關鍵詞: 被動光纖網路即時監控即時監測被動光網路
外文關鍵詞: Passive optical network, PON, Monitoring, real time
相關次數: 點閱:227下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文致力於研究功率分配式與分波多工式被動光網路之即時監控技術。針對樹狀結構的功率分配式被動光網路我們提出兩種即時監控技術:第一種利用光纖布拉格光柵與遠端泵激式摻鉺光纖放大器,達到即時監測網路存活目的,並同時提供光信號18 dB的額外增益。第二種在用戶端前設置光纖布拉格光柵,將光時域反射儀之監測訊號反射回局端,作為各路光纖的存活回覆訊號,這些回覆訊號回到局端後之訊雜比仍有6 dB以上。
    對於分波多工式的被動光網路,我們首先提出陣列波導光柵式被動光網路的基本監控模型,此監測架構中的1310/1550 分波多工耦合器會對傳輸信號造成額外1 dB損耗,而用戶端所接收之光信號旁模抑制比在40 dB以上,在2.5 Gb/s的誤碼率測試實驗中,監測同時僅造成系統額外的功率償付值0.3 dB。接著提出三種使用光切換器及波長解多工器的監控架構,根據光切換器的工作情形,可將監控架構分類成掃描式(時間切割式)以及非掃描式兩種,而其中的兩個時間切割式的監控架構,分別可應用於一般型的分波多工被動光網路以及陣列波導光柵型的被動光網路,它們對光信號造成的額外損耗分別有13 dB與7 dB,經2.5 Gb/s的誤碼率測試,得知監測同時對系統造成額外的功率償付值分別為0.4 dB與0.2 dB,幾乎沒有劣化傳輸品質。
    非掃描式光切換器監控技術可適用於任何型式的分波多工被動光網路,此監測架構對光信號造成的額外損耗為10 dB,關鍵技術是利用光纖斷面對光信號造成的4%反射量,促使局端接收到的反射光功率上升了5 dB,據此即可準確地判斷故障發生於哪一分支,接著再啟動光時域反射儀至該分支作斷點偵測,可有效地節約電源與延長光時域反射儀的使用壽命。


    In this thesis, we concentrate on various types of real-time monitoring technologies for power-splitting passive optical networks (PSPONs) and wavelength division multiplexing passive optical networks (WDM-PONs). We propose and demonstrate two different kinds of monitoring schemes for PSPON in tree-topology structure.
    Firstly, we achieve real-time fault monitoring by using fiber-Bragg-grating (FBG) and Erbium-doped-fiber- amplifier (EDFA) with remote pumping which provides 18 dB net-gain at -10 dBm input signal. Secondly, we set FBGs in front of optical-network-units (ONUs) to reflect the optical pulse emitting from optical time domain reflectometer (OTDR). Then these reflections will be regarded as survival signals in central office, and they still have 6 dB signal-to-noise floor-ratio. For WDM-PON issue, we design a basic monitoring model for AWG based PON firstly. This model causes 1 dB extra loss due to insert a 1310/1550 WDM coupler to signals. The side-mode-suppress-ratio (SMSR) of signals at ONU is above 40 dB. In the experiment of 2.5 Gb/s bit-error-rate (BER) testing, power penalty is only 0.3 dB.
    Secondly, we propose three monitoring technologies based on optical switch (OSW) and WDM de-multiplexer. We can divide these technologies into time-sweeping mode and non-time-sweeping mode. The first scheme of time-sweeping mode can apply to any type of WDM-PONs. It causes 13 dB extra loss to signals and induces extra power penalty of 0.4 dB. The second scheme of time-sweeping mode is suitable AWG based PON only. It causes 7 dB extra loss to signals but just induces extra power penalty of 0.2 dB. Both of them have negligible deterioration to communication quality. Finally, we propose a non-time-sweeping mode monitoring scheme. Such scheme can apply to any type of WDM-PON. Although it might causes 10 dB extra loss to signals, it could increase the received power as much as 5 dB by utilizing 4% reflections at fiber broken interface. Thus, we could make sure which branch is broken. Then the OTDR is employed to trace the possible fault point. So, it could save energy and extend life of OTDR accordingly.

    摘要 i Abstract ii 誌謝 iii 章節目錄 iv 圖表目錄 vii 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 論文架構 3 第二章 被動光網路及監控元組件簡介 5 2-1 被動光網路簡介 5 2-1-1 異步傳輸被動光網路 (APON) 8 2-1-2 乙太被動光網路 (EPON) 11 2-1-3 千兆被動光網路 (GPON) 14 2-1-4 分波多工式被動光網路 (WDM-PON) 15 2-1-5 各種PON之技術比較 16 2-2 監測系統關鍵元組件介紹 19 2-2-1光時域反射儀 (Optical Time Domain Reflectometer) 19 2-2-2光纖布拉格光柵 (Fiber Bragg grating, FBG) 23 2-2-3 摻鉺光纖放大器 (Erbium Doped Fiber Amplifier) 26 第三章 功率分配式被動光網路之監控 28 3-1 Remote pump & FBG式即時監控架構 28 3-1-1 監控架構說明 29 3-1-2 實驗結果及討論 30 3-2 OTDR & FBG式即時監控架構 35 3-2-1 實驗架構說明 35 3-2-2 實驗結果與討論 37 3-3 環形被動光網路之存活監控 44 3-3-1 架構原理說明 44 第四章 分波多工式被動光網路之監控 47 4-1 AWG-PON之即時監控架構基本型 48 4-1-1 實驗架構說明 48 4-1-2 實驗結果與討論 51 4-1-3 誤碼率量測 55 4-2 時間切割式WDM-PON監控架構 57 4-2-1 一般型WDM-PON之時間切割式監控架構 58 4-2-2 AWG-PON之時間切割式監控架構 62 4-2-3 分析與探討 68 4-3 WDM-PON之非掃描式光切換器即時監控架構 68 4-3-1 實驗架構說明 69 4-3-2 實驗結果與討論 70 第五章 結論與未來展望 75 5-1 結論 75 5-2 未來展望 78 參考文獻 80 碩士班期間研究成果 84 作者簡介 85

    [1] T. Koonen, “Fiber to the home/fiber to the premises: what, where, and when?,” Proceedings of the IEEE, vol. 94, no. 5, pp. 911-934, May 2006.
    [2] M. P. McGarry, M. Reisslein, and M. Maier, “WDM Ethernet passive optical networks,” IEEE Opt. Comm., vol. 44, Issue 2, pp. 15-22, Feb. 2006.
    [3] S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, ” Fiber-to-the-home services based on wavelength-division -multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582-2591, Nov. 2004.
    [4] 胡德春, ”下一代PON的技術演進,” www.flyda.com, 12.15.2005.
    [5] 繹明宇, ”中國光纖接入網市場發展現狀與趨勢,” yimingyu.blog.ccidnet.com , 02.23.2006.
    [6] 馬秀莉, 張志朋, 楊淑雯, ”寬帶無源光網絡的類型與比較,” 深圳大學學報, vol. 20, no.1, 2003.
    [7] E. Ringoot, N. Janssens, M. Tassent, J. Angeloupoulos, C. Blondia, and P. Vetter, ” Demonstration of dynamic medium access control for APON and SuperPON,” IEEE GLOBECOM'01, San Antonio, Texas, USA, vol 3, pp.1570-1574, Nov. 2001.
    [8] 通信世界網, ”GPON與EPON技術及產品比較,” www.cww.net.cn, 11.02.2004.
    [9] S. D. Personick, “Photon probe - An optical fiber time domain reflectometer,” Bell Syst. Tech. J., vol. 56, pp. 355-366, Mar. 1977.
    [10] M. K. Barnoski, M. D. Rourke, S. M. Jensen, and R. T. Melville, “Optical time domain reflectometer,” Appl. Opt., vol. 16, pp. 2375-2379, Sept. 1977.
    [11] J. Wilson and J. Hawkes, “Optoelectronics, 3rd Ed.,” Prentice Hall, 1998
    [12] J. Hecht, “Understanding Fiber Optics, 4th Ed.,” Prentice Hall, 2002.
    [13] 陳宣臣, ”波長可調光纖光柵之研製與應用,” 台灣科技大學電子工程研究所碩士論文, 2004.
    [14] 王俊容, ”光纖光柵與光循環器組成之光纖雷射:研製與應用,” 台灣科技大學電子工程研究所碩士論文, 2005.
    [15] 廖協虹, ”(C+L)-band 摻鉺光纖放大器的研製及應用,” 台灣科技大學電子工程研究所碩士論文, 2004.
    [16] 黃政凱, ”前瞻型光纖放大器之研製,” 台灣科技大學電子工程研究所碩士論文, 2005.
    [17] M. Li, L. Dou, A. Hsu, Y.-L. Hsiao, Y.-T. Lai, and S.-K. Liaw, “Performance enhancement of C+L band EDFA by recycling the residual pump lasers,” Microwave and Optical Technol. Lett., to be published.
    [18] K.-P. Hong, J.-S. Baik, T.-W. Oh, and C.-H. Lee, “A method of lifeline communication in passive optical network,” OFC’04, Los Angeles, CA, USA, WO4, Feb. 2004.
    [19] C.-K. Chan, F. Tong, L.-K. Chen, J. Song, and D. Lam, “A practical passive surveillance scheme for optically amplified passive branched optical networks,” IEEE Photon. Technol. Lett., vol. 9, no. 4, pp. 526-528, Apr. 1997.
    [20] Sankawa, S. I. Furukawa, Y. Koyamada, and H. Izumita, “Fault location technique for in-service branched optical fiber networks,” IEEE Photon. Technol. Lett., vol. 2, no. 10, pp. 766-768, Oct. 1990.
    [21] C.-K. Chan, F. Tong, L.-K. Chen, K.-P. Ho, and D. Lam, “Fiber-fault identification for branched access networks using a wavelength-sweeping monitoring source,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 614-616, May 1999.
    [22] C.-H. Yeh and S. Chi, “Optical fiber-fault surveillance for passive optical networks in S-band operation window,” Opt. Express, vol. 13, no. 14, pp. 5494–5498, Jul. 2005.
    [23] K.-P. Hong, J.-S. Baik, and C.-H. Lee, “A method of lifeline communication in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1124-1126, May 2005.
    [24] X. Sun, C.-K. Chan, and L.-K. Chen, “A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration,” IEEE Photon. Technol. Lett., vol. 18, no. 4, pp. 631-633, Feb. 2006.
    [25] K. Lee, S.-B. Kang, D.-S. Lim, H.-K. Lee, and W. V. Sorin, “Fiber link loss monitoring scheme in bidirectional WDM transmission using ASE-injected FP-LD,” IEEE Photon. Technol. Lett., vol. 18, no. 3, pp. 523-525, Feb. 2006.
    [26] K. Tanaka, H. Izumita, N. Tomita, and Y. Inoue, “In-service individual line monitoring and a method for compensating for the temperature-dependent channel drift of a WDM-PON containing an AWGR using a 1.6 μm tunable OTDR,” ECOC'97, Edinburgh, Scotland, UK, vol.3, no. 448, pp. 295-298, Sep. 1997.
    [27] S.-B. Park, D. K. Jung, H. S. Shin, S. Hwang, Y. Oh, and C. Shim, “Optical fault monitoring method using broadband light source in WDM-PON,” IEE Electron. Lett., vol. 42, Issue 4, pp. 239-240, Feb. 2006.
    [28] H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/Demultiplexer with nanometer resolution,” IEE Electron. Lett., vol. 26, pp. 87–88, Jan. 1990.
    [29] M. K. Smit, “Optical Phased Arrays, Integrated Optics in Silicon-Based Aluminum Oxide,” Ph.D. thesis, Delft Univ. of Technol., 1991.
    [30] Z. Wang, B. Zhang, C. Lin, and C.-K. Chan, “A broadcast and select WDM -PON and its protection,” ECOC’05, Glasgow, Scotland, UK, vol. 3, pp.549-550, Sept. 2005.
    [31] T.-J. Chan, Y.-C. Ku, C.-K. Chan, L.-K. Chen, and F. Tong, “A novel bidirectional wavelength division multiplexed passive optical network with 1-1 protection,” OFC’03, Atlanta, Georgia, USA, vol. 2, pp. 779-781, 2003.
    [32] X. Sun, Z. Wang, C.-K. Chan, and L.-K. Chen, “A novel star-ring protection architecture scheme for WDM passive optical access networks,” OFC’05, Anaheim, CA, USA, vol. 3, JWA53, March 2005.
    [33] E.-S. Son, K.-H. Han, J.-H. Lee, and Y.-C. Chung, “Survivable network architectures for WDM PON,” OFC’05, Anaheim, CA, USA, vol. 5, OFI4, March 2005.
    [34] T.-J. Chan, C.-K. Chan, L.-K. Chen, and F. Tong, “A self-protected architecture for wavelength-division-multiplexed passive optical networks,” IEEE Photon. Technol. Lett., vol. 15, no. 11, pp.1660-1662, Nov. 2003.
    [35] K.-W. Lim, E.-S. Son, K.-H. Han, and Y.-C. Chung, “Fault localization in WDM passive optical network by reusing downstream light sources,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2691-2693. Dec. 2005.
    [36] N. Nadarajah, A. Nirmalathas, and E. Wong, “Self-protected Ethernet passive optical networks using coarse wavelength division multiplexed transmission,” IEE Electron. Lett., Vol. 41, Issue 15, pp.866-867, July 2005.
    [37] Akanbi, J. Yu, and G.-K. Chang, “A new scheme for bidirectional WDM-PON using upstream and downstream channels generated by optical carrier suppression and separation technique,” IEEE Photon. Technol. Lett., vol. 18, no. 2, pp. 340-342, Jan. 2006.
    [38] B. Kuhlow, G. Przyrembel, E. Pawlowski, M. Ferstl, and W. Furst, “AWG-based device for a WDM overlay PON in the 1.5 μm band,” IEEE Photon. Technol. Lett., vol. 11, no. 2, pp.218-220, Feb. 1999.
    [39] K.-H. Han, H.-Y. Choi, K.-W. Lim, and Y.-C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett., vol. 16, no. 10, pp. 2380-2382, Oct. 2004.
    [40] K. Tanaka, M. Tateda, and Y. Inoue, “Measuring the individual attenuation distribution of passive branched optical networks,” IEEE Photon. Technol. Lett., vol. 8, no. 7, pp.915-917, July 1996.
    [41] C.-H. Lee, “Passive optical networks for FTTx applications,” OFC’05, Anaheim, CA, USA, vol. 3, OWP3, March 2005.

    QR CODE