簡易檢索 / 詳目顯示

研究生: 盧俊翰
Chun-han Lu
論文名稱: 機電整合系統之順應運動控制器設計與實作
Design and Implementation of Compliant Motion Controllers for Mechatronic Systems
指導教授: 黃安橋
An-Chyau Huang
口試委員: 黃緒哲
Shiuh-Jer Huang
陳亮光
Liang-kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 48
中文關鍵詞: 順應運動控制機電整合無壓力感測器加速度
外文關鍵詞: compliant motion control, Mechatronic, force sensor-less, acceleration
相關次數: 點閱:257下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文針對機電控制中必須考慮接觸力影響的系統,設計控制器使系統的動態行為轉換成預設的機械阻抗特性。透過此控制策略,可賦予系統期望的動態行為;在與環境的幾何限制互動時,亦能表現出適當的順應性。本控制架構的實現與傳統的阻抗控制有明顯的不同,其不需要力量感測器的回授,但必須裝置加速度規;耗費成本相對較低,在產品化的發展更具競爭力。最後,經實驗證實,無論是自由空間或受限運動,本研究所提出之控制器皆能展現優良的控制效能。


In this thesis, we propose a strategy for the compliant motion control of mechatronic systems by impedance modulation. In steady of the costly force sensors used in the traditional impedance control, this approach requires only the acceleration feedback. In some low acceleration cases, we may also use acceleration observers to implement an accelerometer-free algorithm. Experimental results show that the proposed controller can achieve improved performance during the compliant motion phase.

中文摘要 英文摘要 誌謝 目錄 圖表索引 第一章 緒論 第二章 控制器設計 2.1 自由空間運動之控制器設計 2.2 受限運動之控制器設計 2.3 垂直移動架構下的順應運動控制器設計 第三章 實驗架構與結果 3.1 實驗架構 3.2 系統鑑別 3.3 實驗結果 3.3.1 傳統PID控制器於受限空間運動之分析 3.3.2 所提控制器之受限運動結果 3.3.3 以估測的方法取代加速度規的回授 第四章 結論與未來展望 附錄A LAE估測器頻寬增益的分析實驗 附錄B LAE的估測精度以及對控制性能的影響 參考文獻 作者簡介

[1] Gareth J. Monkman, Stefan Hesse, Ralf Steinmann, and Henrik Schunk, Robot grippers, Wiley-VCH, pp.367-372, 2007.

[2] Hogan, N., “Impedance control: an approach to manipulation: Part 1-theory, Part 2-implementation, Part 3-an approach to manipulation,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.107, pp.1-24, 1985.

[3] Kazerooni, H., Bausch, J. J. and Kramer, “An approach to automated deburring by robot manipulators,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.108, No.4, pp.354-359, 1986.

[4] Anderson, R. J. and Spong, M. W., “Hybrid impedance control of robotic manipulators”, IEEE Transactions on Robotics and Automation, Vol.4, No.5, pp.549-556, 1988.

[5] Goldenberg, A. A., “Implementation of force and impedance control in robot manipulators,” Proceedings of IEEE International Conference on Robotics and Automation, Vol.3, pp.1626-1632, 1988.

[6] Gonzalez, J. J. and Widmann, G. R., “Force commanded impedance control scheme for robots with hard nonlinearities,” IEEE Transactions on Control Systems Technology, Vol.3, No.4, pp.398-408, 1995.

[7] Park, J. H., “Impedance control for biped robot locomotion”, IEEE Transactions on Robotics and Automation, Vol.17, No.6, pp.870-882, 2001.

[8] Jung, S., Hsia, T. C., and Bonitz, R. G., “Force tracking impedance control of robot manipulators under unknown environment,” IEEE Transactions Control System Technology, vol. 12, no. 3, pp. 474–483, May 2004.

[9] Ortega, R., Carelli, R., Amestegui, M. and Kelly, R., “An Adaptive Impedance Control of Robot Manipulators,” Proceedings of IEEE Conference on Robotics and Automation, pp.572-557, 1989.

[10] Slotine, J-J E. and Li, W., “Adaptive strategy in constrained manipulators,” Proceedings of IEEE International Conference on Robotics and Automation, pp.595-601, 1987.

[11] Lu, W. S. and Meng, Q. H., “Impedance control with adaptation for robotic manipulations,” IEEE Transactions on Robotics and Automation, Vol.7, No.3, pp.408-415, 1991.

[12] Paul, R. and Shimano, B., “Compliance and control,” Proceedings of the Joint Automatic Control Conference, San Francisco, pp.694-699, 1976.

[13] Mason, M. T., “Compliance and force control for computer controlled manipulators,” IEEE Transactions on Systems, Man, and Cybernetics, Vol.11, No.6, pp.418-432, 1981.

[14] Raibert, M. H. and Craig, J. J., “Hybrid position/force control of manipulators,” ASME, Journal of Dynamics Systems, Measurements and Control, Vol.102, pp.126-133, 1981.

[15] McClamroch, N. H. and Wang, D., “Feedback stabilization and tracking of constrained robots,” IEEE Transactions on Automatic Control, Vol.33, No.5, pp.419-426, 1998.

[16] Xiao, D., Ghosh, B., Xi, N., and Tarn, T., “Sensor-based hybrid position/force control of a robot manipulator in an uncalibrated environment,” IEEE Transactions Control System Technology, vol. 8, no. 4, pp. 635–645, Jul. 2000.

[17] Ferretti, G., Magnani, G. A., and Rocco, P., “Impedance control for elastic joints industrial manipulators,” IEEE Transactions on Robotics and Automation, pp. 488-498, 2004.

[18] Kazerooni, H. and Her, M. G., “Dynamics and control of a haptic interface device ,” IEEE Transactions on Robotics and Automation, pp.453-464, 1994.

[19] Astrom, K. J. and Rundqwist, L., “Integrator windup and how to avoid it,” Proceedings of the 1989 American Control Conference, Pittsburgh, pp. 1693-1698, 1989.

[20] Peng, Y., Vrancic, D., and Hanus, R., “Anti-windup, bumpless, and conditioned transfer techniques for PID controllers,” IEEE Control System Magazine, vol. 16, pp.48–56, Aug. 1996.

[21] Astrom, K. J. and Hagglund, T., Advanced PID control, Instrumentation, system, and Automation Society, USA, pp.76-87, 2006.

[22] Lee, S. H. and Song, J. B., “Acceleration estimator for low-velocity and low-acceleration regions based on encoder position data,” IEEE/ASME Transactions Mechatronics, vol. 6, no. 1, pp. 58–64, Mar. 2001.

[23] 羅岳修,剛性機械手臂之適應阻抗控制,國立臺灣科技大學機械工程研究所,碩士學位論文,2002。

[24] 陳威帆,直流馬達之適應性順應運動控制研究,國立臺灣科技大學機械工程研究所,碩士學位論文,2006。

[25] 林珈鋒,馬達動態行為之阻抗控制研究,國立臺灣科技大學機械工程研究所,碩士學位論文,2007。

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE