簡易檢索 / 詳目顯示

研究生: 石育函
Yu-han Shih
論文名稱: 可相容於IEEE 802.15.4標準之避免隱藏節點問題的分群策略
Enhanced Grouping Strategy for Solving Hidden Node Problem in IEEE 802.15.4 LR-WPAN Compatible
指導教授: 黎碧煌
Bih-hwang Lee
口試委員: 陳添智
none
鍾添曜
none
吳傳嘉
none
楊英魁
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 65
中文關鍵詞: 無線感測網路隱藏節點問題
外文關鍵詞: wireless snesor network, hidden node problem
相關次數: 點閱:374下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   無線感測網路(wireless sensor network; WSN)是由感測節點所組成,感測節點由於其運作環境之特性,故大多以電池為其主要能量之供應,因此其設計必須要符合簡單、便宜、低功率、長時間運作等考量。尤其是能量的使用效率,一直是很重要的研究議題。在IEEE 802.15.4標準中,MAC層使用修改過的碰撞避免式載波偵測多重存取(carrier sense multiple access with collision avoidance; CSMA/CA)來存取通道以達到較小的能量消耗,但是此一機制對於隱藏節點問題(hidden node problem; HNP)並無法防範。在先前的研究中發現,於一個節點隨機分佈的網路裡,節點間發生產生隱藏節點問題之機率高達41%。因此,此一問題將造成資料的碰撞,重複的傳送資料,使能量大量的消耗,因而降低無線感測網路的壽命。
      有鑑於以往避免隱藏節點的方式,如RTS/CTS(request to send/clear to send)協定並不適合使用在IEEE 802.15.4標準之下,在不增加網路的額外負擔(overhead)之下,我們參考先前的研究使用分群的概念,將可傳輸的時間分成若干的區段,且將整個網路的成員分成若干群,最多六群。每個群有屬於自己的存取區段,群內的節點必須彼此互相不為隱藏節點。當協調者(coordinator)發現隱藏節點造成碰撞發生時,便會開始執行分群的機制,以避免隱藏節點碰撞的再度發生。
      本論文有效改善先前分群策略的缺點;此外,我們的分群的演算機制可相容於僅支援IEEE 802.15.4標準的節點,使其能在適當的時間進行傳輸,且不會與使用分群機制的節點產生碰撞,並且可動態的調整各群的存取區間,以符合網路的使用效率。經由模擬的方式,我們將提出的方法與IEEE 802.15.4標準以及先前的分群機制比較,從模擬結果顯示,本論文的方法有較佳的結果。


      Wireless sensor networks (WSN) is composed of by sensor nodes. Due to its operational environment of sensor nodes, the battery is used as its main energy source. Therefore its design must meet a simple, cheap, low-power, long-term operation considerations. In particular, the use of energy efficiency has been very important research topics. In the IEEE 802.15.4 standard, MAC layer include modified CSMA/CA algorithm to achieve smaller energy consumption. However, such an algorithm can't prevent hidden node problem(HNP). In previous studies have found that if the node distribution is uniform, the probability of occurrence of HNP is as high as 41%. So, this problem will results in data collision, repeated transmission of data, and a large amount of energy consumption, thus lowering wireless sensor networks lifetime.
      In view of the past to avoid HNP, like RTS/CTS(request to send/clear to send) mechanism is not suitable for use under the IEEE 802.15.4 standard. Under the prerequisite of not increasing additional overhead of sensor network, we refer to the concept of group strategy. Grouping strategy divide the transmission time into several segments, and the entire network of nodes can be divided into several groups, the largest of six groups. Each group has its own access segments, and in the group HNP must not exist. When the coordinator found the HNP is exist, it will begin the implementation of a mechanism to avoid the recurrence of HNP.
      In this thesis, we proposed the enhanced group strategy, it effectively improves the disadvantage of traditional grouping strategy. In addition, our strategy improves the compatibility with the standard IEEE 802.15.4 nodes, it can be made at the appropriate time transmission, and will not have a collision with the grouping node. It can also dynamically adjust the access time of each group, in line with the efficient use of the bandwidth. Through simulations, we compare our proposed strategy, previous grouping strategy, and the IEEE 802.15.4 standard. The simulation results show that our strategy has a better result.

    中文摘要.....................................iv 英文摘要......................................v 圖表索引.....................................ix 第一章 緒論...................................1 1.1 簡介......................................1 1.2 研究動機與目的............................2 1.3 章節概要..................................4 第二章 IEEE 802.15.4標準概述..................5 2.1 IEEE 802.15.4的簡介.......................5 2.1.1資料傳送方法.............................7 2.1.2超碼框的結構............................11 2.1.3 訊框格式...............................14 2.2 相關研究.................................20 第三章 公平且動態的分群策略..................22 3.1 判斷隱藏節點的發生.......................23 3.2 收集隱藏節點資訊.........................24 3.3 進行分群.................................27 3.4 分配網路存取時間.........................29 3.5 訊標訊框格式的修改.......................31 第四章 系統模擬與結果........................34 4.1 分群演算法之公平性.......................34 4.2 模擬環境與參數...........................35 4.3 方案一:訊框到達速率與所在區域無關.......37 4.3.1 有效流量...............................37 4.3.2 延遲及能量消耗.........................42 4.3.3 網路中包含不可分群節點的情形...........47 4.3.4節點位置與效能之影響....................50 4.4方案二:訊框到達速率與所在區域有關........53 第五章 結論及未來研究........................62 參考文獻.....................................63

    [1] IEEE 802 Working Group, “Standard for Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (LR-WPANs),” ANSI/IEEE 802.15.4, Oct. 2003.

    [2] F.A. Tobagi and L. Kleinrock, “Packet Switching in Radio Channels: Part II-The Hidden Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone Solution,” IEEE Transaction on Communication, vol. 23, no. 12, pp. 1417-1433, Dec. 1975.

    [3] P. Karn, “MACA - a new channel access method for packet radio,” in Proc. of the 9th ARRL/CRRL Computer Networking Conference, pp. 134-140, Sep. 1990.

    [4] Z. J. Haas and J. Deng, "Dual busy tone multiple access (DBTMA)-a multiple access control scheme for ad hoc networks," IEEE Transactions on Communications, vol. 50, no. 6, pp. 975-985, Jun. 2002.

    [5] H. Zhai, J. Wang, Y Fang, and D. Wu, “A dual-channel mac protocol for mobile ad hoc networks,” in Proc. of IEEE Global Telecommunications Conference Workshops 2004 (GlobeCom Workshops 2004), pp. 27-32, Nov. 2004.

    [6] H. Zhai, J. Wang, and Y Fang, “DUCHA: A New Dual-Channel MAC Protocol for Multihop Ad Hoc Networks,” IEEE Transactions on Wireless Communications, vol. 5, no. 11, pp. 3224-3233, Nov. 2006.

    [7] H. Zhai, J. Wang, X. Chen, and Y Fang, “Medium access control in mobile ad hoc networks: Challenges and solutions,” Wireless Communications and Mobile Computing (Special issue on Ad Hoc Networks), vol. 6, no. 2, pp. 151-170, Mar. 2006.

    [8] S. Leng, L. Zhang, Y. Chen, “IEEE 802.11 MAC protocol enhanced by busy tones,” in Proc. of IEEE International Conference on Communications, 2005 (ICC 2005), vol. 5, pp. 2969-2973, 16-20 May. 2005.

    [9] H. Zhai; Y. Fang , “A Solution to Hidden Terminal Problem Over a Single Channel in Wireless AD HOC Networks,” in Proc. of Military Communications Conference, 2006 (MILCOM 2006), pp. 1-7, Oct. 2006.

    [10] S.B. Eisenman, A.T. Campbell, “Structuring contention-based channel access in wireless sensor networks,” in Proc. of The Fifth International Conference on Information Processing in Sensor Networks, 2006 (IPSN 2006), pp. 226-234, 19-21 Apr. 2006.

    [11] E. S. Jung and N. H. Vaidya, “A power control MAC protocol for ad hoc networks,” in Proc. of ACM International Conference on Mobile Computing and Networking (MOBICOM), pp. 36-47, 2002.

    [12] J. Zhu, X. Guo, L. L. Yang, and W. Steven, “A single-channel solution for transmission power control in wireless ad hoc networks,” in Proc. of ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC), pp. 210-221, 2004.

    [13] A. Sheth, R. Han, “SHUSH: reactive transmit power control for wireless MAC protocols,” in Proc. of First International Conference on Wireless Internet, 2005, pp. 18-25, 10-14 Jul. 2005.

    [14] K.P. Shih; Y.D. Chen, “CAPC: a collision avoidance power control MAC protocol for wireless ad hoc networks,” IEEE Communications Letters, vol. 9, no. 9, pp. 859-861, Sep. 2005.

    [15] L.J. Hwang; S.T. Sheu; Y.Y. Shih; Y.C. Cheng, “Grouping Strategy for Solving Hidden Node Problem in IEEE 802.15.4 LR-WPAN,” in Proc. of Wireless Internet Conference, pp.26-32, Jul. 2005.

    [16] L. Kleinrock and F. A. Tobagi, “Packet switching in radio channels:Part I - Carrier Sense Multiple-Access modes and their throughput-delay characteristics,” IEEE Transactions on Communications, vol. 23, no. 12, pp. 1400-1416, 1975.

    [17] W. Ye, J. Heidemann, and D. Estrin. “An energy-efficient MAC protocol for wireless sensor networks,” in Proc. of the 21st Conference of the IEEE Computer and Communications Societies (INFOCOM), vol. 3, pp.1567-1576, Jun. 2002.

    [18] T. Dam, K. Langendoen, “An Adaptive Energy-Efficient MAC Protocol for Wireless Sensor Networks,” in Proc. of ACM Sensys Nov. 2003.

    [19] K. Ghaboosi, M. Latva-aho, “A Novel Topology Aware MAC Protocol for the Next Generation Wireless Ad Hoc Networks,” in Proc. of Vehicular Technology Conference, 2007 (VTC2007-Spring), IEEE 65th, pp. 41-45, 22-25 Apr. 2007.

    [20] LAN MAN Standards Committee of the IEEE Computer Society, “Information technology - telecommunications and information exchange between systems - local and metropolitan area networks – specific requirements - part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications,” 1999.

    [21] S. Ray, J. B. Carruthers, and D. Starobinski, “Evaluation of the masked node problem in ad-hoc wireless LANs,” IEEE Transactions on Mobile Computing, vol. 4, no. 5, pp.430-442, Sept.-Oct. 2005.

    [22] J.L. Sobrinho, R. de Haan, J.M. Brazio, “Why RTS-CTS is not your ideal wireless LAN multiple access protocol,” in Proc. of Wireless Communications and Networking Conference, vol. 1, pp. 81-87, 13-17 Mar. 2005.

    [23] Chipcon corporation, “Data Sheet for CC2420 2.4GHz IEEE 802.15.4/Zigbee RF Transceiver,” 2004.

    [24] R. Jain, A. Durresi, and G. Babic, “Throughput fairness index: an explanation,” in Proc. of ATM Forum/99-0045, Feb. 1999.

    QR CODE