簡易檢索 / 詳目顯示

研究生: 許俸鳴
Feng-Ming Hsu
論文名稱: 基於直調雷射長距離分時分波多工被動光網路系統的啁啾效應控制技術
Chirp Management for Long Reach TWDM-PON Systems Based on Direct Modulation Lasers
指導教授: 李三良
San-Liang Lee
口試委員: 廖顯奎
Shien-Kuei Liaw
曹恆偉
Hen-Wai Tsao
吳靜雄
Jing-Shown Wu
楊淳良
Chun-Liang Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 58
中文關鍵詞: 啁啾管理析光器頻譜斜率直調雷射啁啾效應分時分波多工被動光網路可調式收發機明滅比色散
外文關鍵詞: chirp management, etalon, spectral slope, direct modulation laser, chirp, TWDM PON, tunable transceiver, extinction ratio, dispersion
相關次數: 點閱:410下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出以啁啾管理的方式提升直調雷射的傳輸距離,藉由析光器之週期性頻譜特性,實現了四個不同波長之直調雷射可同時傳輸10 Gb/s長距離傳輸分時分波多工被動光網路。啁啾管理可有效提高訊號之明滅比且降低色散造成符際干擾的影響,且利用析光器之穿透與反射功率為波長相依的特性,實現直調雷射的波長栓鎖機制,提升系統穩定度。
由於濾波器特性會對啁啾管理有很大的影響,故本論文比較啁啾管理雷射內部的光頻譜整形器與論文中使用的析光器用於長距離分時分波多工被動光網路系統中的效能,藉由原理分析與量測結果,可得到析光器頻譜斜率越高,系統誤碼率表現越好,但對波長的偏移越敏感;結合直調雷射與析光器的方式,可同時對所有直調雷射進行啁啾管理及波長栓鎖,相對使用啁啾管理雷射做為發射機的方式,可在成本較低的情況下實現長距離分時分波多工被動光網路系統。實驗結果顯示此方法可傳輸40 Gb/s的100公里單模光纖傳輸且高分光比之分時分波多工被動光網路系統,且適合應用於次世代被動光網路規範。


We proposed a chirp management scheme for transmission of four channels 10 Gb/s over 100 km of long-reach time- and wavelength- division multiplexed passive optical network (TWDM-PON) systems. The transmission is achieved by using a direct modulation laser (DML) and the periodic spectral characteristic of a Fabry-Perot (FP) etalon. Chirp management can increase the extinction ratio (ER) and reduce the effect of intersymbol interference (ISI) caused by dispersion. Moreover, the wavelength locking mechanism of the laser source can be obtained by monitoring the wavelength drift with the wavelength dependent transmission and reflection of the etalon.
According to the theoretical analysis and experimental results, the use of an etalon with a higher slope in the spectral characteristics can lead to a better bit error rate (BER), but the system will be more sensitive to the wavelength drift between the laser and etalon.
Finally, we realize a transmission of 40 Gb/s total capacity over 100 km single mode fiber that can be used in a high splitting TWDM-PON system by simply using direct modulation lasers and an etalon. The cost of this scheme can be lower than the system using commercial chirp managed lasers for long-reach TWDM-PON systems.

目錄 摘要 I Abstract II 致謝 III 圖目錄 VII 表目錄 IX 第一章 導論 1 1.1 前言 1 1.2 長距離光接取網路介紹 1 1.3 研究動機 3 1.4 文獻探討 5 1.5 論文架構 10 第二章 啁啾管理方法與元件介紹 11 2.1 前言 11 2.2 直調雷射啁啾效應 11 2.2.1 啁啾效應的產生及特性 11 2.2.2 啁啾效應對光訊號脈波的影響 13 2.3 直調雷射之啁啾管理 16 2.4 基於法布里-比洛析光器之光濾波器 19 第三章 啁啾管理參數設定與實測 23 3.1 前言 23 3.2 系統設計概念 23 3.3 系統元件量測 25 3.3.1 析光器特性量測 25 3.3.2 直調雷射之熱調特性 27 3.4 長距離TWDM-PON系統參數設定與效能量測 28 3.4.1 明滅比量測與靜態啁啾值設定 28 3.4.2 四波混頻影響量測 29 3.4.3 光訊雜比量測 31 3.4.4 誤碼率及功率償付值量測 32 3.4.5 波長栓鎖機制之設計與量測 38 3.5 本章小結 41 第四章 濾波器特性對啁啾管理的影響 43 4.1 前言 43 4.2 CML於長距離TWDM-PON系統之量測 43 4.2.1 CML內部架構介紹 43 4.2.2 明滅比量測及直調雷射波長位置設定 44 4.2.3 誤碼率及波長偏移容忍度量測 45 4.3 不同濾波器應用於啁啾管理之比較與分析 48 4.4 本章小結 50 第五章 結論 52 5.1 成果 52 5.2 未來研究方向 53 參考文獻 54 圖目錄 圖1-1 長距離光接取網路簡化通信網路之概念圖 2 圖1-2 長距離光接取網路之架構 3 圖1-3 基於雙共振腔析光器之啁啾管理雷射 6 圖1-4 基於環形共振器之啁啾管理雷射 7 圖1-5 基於可調式光濾波器之啁啾管理雷射 8 圖1-6 利用DI進行啁啾管理以提升TWDM-PON之傳輸距離 9 圖2-1 直調雷射的頻率啁啾及相位變化與輸出光功率的關係 13 圖2-2 頻率啁啾與光纖色散引起的脈波失真,(a)只有靜態啁啾存在(b)只有暫態啁啾(c)靜態與暫態啁啾同時存在 15 圖2-3 啁啾管理之明滅比提升原理 17 圖2-4 (a)(b)DML輸出之訊號對頻率與相位變化,(c)(d)經濾波器後訊號對頻率與相位變化 19 圖2-5 光線進入析光器後的示意圖 20 圖3-1 基於啁啾管理方法的長距離TWDM-PON架構(a) OLT之架構(b) ONU之架構(c)完整傳輸系統架構 24 圖3-2 析光器穿透頻譜及相對應頻譜斜率值 26 圖3-3 實測析光器的穿透頻譜圖 27 圖3-4 直調DFB雷射之熱調波長頻譜圖 28 圖3-5 四個波長傳輸進入接收機前的頻譜圖 30 圖3-6 傳送一個波長與四個波長之誤碼率量測圖 31 圖3-7 (a)下行(b)上行100公里單模光纖傳輸TWDM-PON量測架構 33 圖3-8 (a)下行(b)上行100公里傳輸TWDM-PON系統誤碼率量測結果 34 圖3-9 (a)明滅比償付值(b)功率償付值 35 圖3-10 (a)下行(b)上行10 Gb/s直調雷射100公里單模光纖傳輸之波長偏移對誤碼率的影響 37 圖3-11 利用析光器做波長鎖模的系統架構 39 圖3-12 (a) 析光器穿透與反射功率量測架構(b)波長偏移時對應的穿透及反射功率差 40 圖4-1 CML內部架構圖 44 圖4-2 CML應用於TWDM-PON之100公里單模光纖傳輸量測架 46 圖4-3 CML誤碼率量測結果 47 圖4-4 CML輸出波長偏移對誤碼率之影響 47 圖4-5 DFB雷射結合析光器與CML之誤碼率比較 49 圖4-6 DFB雷射結合析光器與CML之波長偏移容忍度比較 50 表目錄 表3-1 DFB雷射波長及析光器峰值波長比較表 29 表3-2 每個波長所需要的最佳電壓峰對峰值 29 表3-3 四個波長經100公里單模光纖傳輸後之光訊雜比 32 表4-1 CML之特性參數 45 表4-2 CML之參數設定 46 表4-3 不同濾波器之類型與特性比較 48 表4-4 不同類型濾波器應用於TWDM-PON長距離傳輸之比較 51

[1] Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian and Y. Ma, “Time- and Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) for Next-Generation PON Stage 2 (NG-PON2),” IEEE Journal of Lightwave Technology, Vol. 31, no. 4, pp. 587-593, 2013.
[2] H. Song, Long-Reach Passive Optical Networks, University of California, DAVIS, 2009.
[3] D. P. Shea and J. E. Mitchell, “Long-Reach Optical Access Technologies,” IEEE Network, Vol. 21, no. 5, pp. 5-11 , 2007.
[4] P. Vetter, “Next Generation Optical Access and Green Networks,” 38th European Conference and Exhibition on Optical Communications, ECOC, Amsterdam, Netherlands, 2012, pp. 1-42.
[5] 40-Gigabit-capable passive optical networks (NG-PON2): General requirements, ITU-T G.989.1, 2013.
[6] D. P. Shea and J. E. Mitchell, “A 10-Gb/s 1024-Way-Split 100-km Long-Reach Optical-Access Network,” IEEE Journal of Lightwave Technology, Vol. 25, no. 3, pp. 685-693, 2007.
[7] K. O. Kiml, K. H. Doo and S. S. Lee, “Implementation of OEO based Reach Extender for 60km long reach GPON,” 9th International Conference on Optical Internet, COIN, Jeju, Korea, 2010, pp. 1-3.
[8] Z. F. Fan and D. Mahgerefteh, “Chirp Managed Lasers A New Technology for 10Gbps Optical Transmitters,” Optik & Photonik, Vol. 2, no. 4, pp. 39-41, 2007.
[9] D. Mahgerefteh, Y. Matsui, C. Liao, B. Johnson, D. Walker, X. Zheng, Z. F. Fan, K. McCallion and P. Tayebati, “Error-free 250km transmission in standard fiber using compact 10 Gbit/s chirp-managed directly modulated lasers(CML) at 1550nm,” Electronics Letters, Vol. 41, no. 9, pp. 543-544, 2005.
[10] Y. Yokoyama, T. Hatanaka, N. Oku, H. Tanaka, I. Kobayashi, H. Yamazaki and A. Suzuki, “10.709-Gb/s-300-km Transmission of PLC-based Chirp-Managed Laser Packaged in Pluggable Transceiver Without Any Optical or Electrical Dispersion Compensation,” 34th European Conference and Exhibition on Optical Communications, ECOC, Brussels, Belgium, 2008 ,pp. 1-2.
[11] L. Yi, Z. Li, M. Bi, W. Wei and W. Hu, “Symmetric 40-Gb/s TWDM-PON With 39-dB Power Budget,” IEEE Photonics Technology Letters, Vol. 25, no. 7, pp. 644-647, 2013.
[12] M. Bi, S. Xiao, L. Yi, H. He, J. Li, X. Yang and W. Hu, “Power budget improvement of symmetric 40-Gb/s DML-based TWDM-PON system,” Optics Express, Vol. 22, no. 6, pp. 6925-6933, 2014.
[13] J. C. Cartledge and G. S. Burley, “The effect of laser chirping on lightwave system performance,” IEEE Journal of Lightwave Technology, Vol. 7, no. 3, pp. 568-573, 1989.
[14] F. Koyama and K. Iga, “Frequency chirping in external modulators,” IEEE Journal of Lightwave Technology, Vol. 6, no. 1, pp. 87-93, 1988.

[15] R. A. Linke, “Modulation induced transient chirping in single frequency lasers,” Journal of Quantum Electronics, Vol. 21, no. 6, pp. 593-597, 1985.
[16] B. W. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” IEEE Journal of Lightwave Technology, Vol. 10, no. 7, pp. 964-970, 1992.
[17] S. Yamamoto, M. Kuwazuru, H. Wakabayashi and Y. Iwamoto, “Analysis of chirp power penalty in 1.55-μm DFB-LD high-speed optical fiber transmission systems,” IEEE Journal of Lightwave Technology, Vol. 5, no. 10, pp. 1518-1524, 1987.
[18] R. S. Tucker, “High-speed modulation of semiconductor laser,” IEEE Journal of Lightwave Technology, Vol. 3, no. 6, pp. 2572-2584, 1985.
[19] I. Tomkos, I. Roudas, R. Hesse, N. Antoniades, A. Boskovic and R. Vodhanel, “Extraction of laser rate equations parameters for representative simulations of metropolitan-area transmission systems and networks,” Optics Communication, Vol. 194, no. 1-3, pp. 109-129, 2001.
[20] P. J. Corvini and T. L. Koch, “Computer simulation of high bit rate optical fiber transmission using single frequency lasers,” IEEE Journal of Lightwave Technology, Vol. 5, no. 11, pp. 1591-1595, 1987.
[21] Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-Managed Directly Modulated Laser (CML),” IEEE Photonics Technology Letters, Vol. 18, no. 2, pp. 385-387, 2006.
[22] B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, Willey, 1991.
[23] P. Krehlik, “Characterization of semiconductor laser frequency chirp based on signal distortion in dispersive optical fiber,” Opto-electronics review, Vol. 14, no. 2, pp. 123-128, 2006.
[24] H. Shankar, “Duobinary Modulation for Optical Systems,” IEEE Journal of Lightwave Technology, Vol. 23, no. 6, pp. 11, 2006.
[25] A. Frenkel and C. Lin, “Angle-tuned etalon filters for optical channel selection in high density wavelength division multiplexed systems,” IEEE Journal of Lightwave Technology, Vol. 7, no. 4, pp. 615-624, 1989.
[26] Y. C. Chung, “Temperature tuned ZnS etalon filters for WDM systems,” IEEE Photonics Technology Letters, Vol. 4, no. 6, pp. 600-602, 1992.
[27] G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 um in silicon etalon,” Electronics Letters, Vol. 28, no. 1, pp. 83-85, 1992.
[28] P. Tayebati, P. D. Wang, D. Vakhshoori, and R. N. Sacks, “Widely tunable Fabry-Perot filter using Ga(Al)As/AlOx deformable mirrors,” IEEE Photonics Technology Letters, Vol. 10, no. 3, pp. 394-396, 1998.
[29] C. K. Madsen and J. H. Zhao, Optical filter design and analysis: A Signal Processing Approach, John Wiley & Sons Inc., 1999.
[30] 林淑娟,“高速直調雷射之傳輸性能改善及應用於WDM-PONs 系統之研究”,國立台灣科技大學博士論文,2008.

[31] M. Born and E. Wolf, Principles of optics, 7th ed. Cambridge University Press, 1999.
[32] Y. M. Karfaa, M. Ismail, A. F. M, S. Shaari and M. S. P, “Effects of Four-wave Mixing Crosstalk in WDM Networks on the Transmitted Optical Frequencies and Wavelengths of Channels for Various Fiber Types,” Asia-Pacific Conference on Applied Electromagnetics, APACE, Melaka, Malaysia, 2007, pp. 1-5.
[33] Maxim Integrated, Appl. Note HFAN-2.2.0, pp. 1-5.
[34] S. P. Singh and N. Singh, “Nonlinear Effects in Optical Fibers: Origin, Management and Applications,” Progress In Electromagnetics Research, Vol. 73, pp. 249-275, 2007.
[35] G. Keiser, Optical Fiber Communications, McGraw-Hill Education, 2008.
[36] W. Jia, J. Xu, Z. Liu, K. H. Tse, and C. K. Chan, “Generation and Transmission of 10-Gb/s RZ-DPSK Signals Using a Directly Modulated Chirp-Managed Laser,” IEEE Photonics Technology Letters, Vol. 23, no. 3, pp. 173-175, 2011.

QR CODE