簡易檢索 / 詳目顯示

研究生: 李冠毅
Guan-Yi Li
論文名稱: 應用於第五代通訊之全向性圓極化天線與毫米波天線陣列設計
Omnidirectional Circularly Polarized Antenna for 5G Communication and Millimeter-wave Antenna Array Design
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 楊成發
Chang-Fa Yang
廖文照
Wen-Jiao Liao
陳晏笙
Yen-Sheng Chen
馬自莊
Tzyh-Ghuang Ma
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 98
中文關鍵詞: 偶極天線負導磁率傳輸線零階傳輸線雙層平行帶線威爾京森分波器全向性圓極化天線陣列天線梳形串列式微帶貼片天線陣列頻率調變連續波雷達系統
外文關鍵詞: Dipole, MNG-TL, Zeroth-order transmission line, Double sided parallel strip line, Omnidirectional circularly polarized antenna, Antenna array, Combline series-fed microstrip patch array, FMCW radar system
相關次數: 點閱:357下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文包含兩項獨立研究主題。
    第一部份為「應用於第五代通訊之全向性圓極化天線」。首先,本設計的精髓在於將兩個結構完全不同的天線結合,使其達到全向性圓極化的特性。吾人以線性極化之偶極天線與另一線性極化之負導磁率零階傳輸線結合,因兩種結構的天線之輻射場型均為全向性型態,故將兩天線在物理空間上以相差90度結合即可達到全向性且圓極化的特性,此研究乃應用於未來第五代通訊之小型基地台。
    第二部分為「毫米波天線陣列設計」,此設計共包含兩種應用於毫米波頻段之天線陣列,第一種為中央饋入串列式梳形微帶貼片天線,其優點為具有高增益的主波束。一般傳統饋入形式的微帶貼片天線,因其電場方向平行金屬地,根據水平方向邊界條件,會在板邊產生零點,使得波束寬受到限制;反之梳形天線,因其電場方向垂直金屬地,故依據電場垂直邊界條件在板邊不會消失,並在金屬地較長的方向產生多重反射,加上表面波在板邊會有繞射情形發生,故具有較寬的正增益波束寬,可以偵測到前方距離較遠且角度更寬的物體;第二種則為側邊饋入串列式梳形微帶貼片天線,有別於中央饋入式,吾人將側邊饋入式之天線陣列用於汽車雷達收發系統的接收端,其優點為不只具有比傳統微帶貼片天線更寬的正增益波束寬且滿足了頻率調變連續波雷達中兩接收端天線之間相位差需為線性遞減之嚴格要求。
    本論文詳細地討論此兩項獨立研究主題,包含了其設計概念、射頻電路及模擬與量測的比較,其模擬與量測結果均呈現良好的吻合度。


    This thesis consists of two independent researches. In the first part, A circularly polarization omnidirectional antenna which is applied to 5G communication is proposed and demonstrated. The essence of this research is combining two different kinds of antenna in order to achieve the characteristic of omnidirectional radiation pattern and circularly polarization. Two kinds of antenna are dipole and zeroth-order resonator respectively. Because both of them are linear polarization and omnidirectional radiation pattern, the the characteristic of omnidirectional radiation pattern and circularly polarization can be achieved as long as they are combined in physical space with 90 degree. This research is especially applied to 5G small base station in the future.
    Secondly, a design of millimeter wave antenna array is studied. This part includes two kinds of antenna array which are both designed at 24.15 GHz. One antenna is called series-fed combline microstrip patch fed at the center. Compared with traditional microstrip patch antenna, combline array has much higher gain and wider beamwidth due to boundary condition and polarization. With this characteristic, the antenna can detect much farther and wider object in the front. The other antenna is also called series-fed combline microstrip patch but fed from the side. Because this type of antenna has much wider beamwidth and satisfy the request that the phase difference between two receivers in FMCW radar system must be linearly descending, it serves as receiver part rather than transceiver part. This thesis includes design idea, RF circuits simulated and measured results. The simulation and measurement results show good agreement.

    摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 3 1.3 研究貢獻 5 1.4 論文組織 6 第二章 應用於第五代通訊之全向性圓極化天線 7 2.1 前言 7 2.2 次6 GHz頻段之全向性圓極化天線 8 2.2.1 偶極天線設計 8 2.2.2 負導磁率零階傳輸線設計 11 2.2.3 雙層平行帶線之威爾京森分波器設計 17 2.2.4 整體架構 20 2.2.5 模擬與量測結果 21 2.3 毫米波28 GHz之全向性圓極化天線 28 2.3.1 整體架構 28 2.3.2 模擬與量測結果 33 2.4 結語 39 第三章 毫米波天線陣列設計 40 3.1 前言 40 3.2 梳形串列式微帶貼片天線陣列 41 3.2.1 設計原理 41 3.2.2 中央饋入式 43 3.2.3 側邊饋入式 48 3.2.4 與傳統微帶貼片天線陣列比較 52 3.3 應用於收發機之天線陣列 54 3.3.1 整體架構 54 3.3.2 模擬與量測結果 59 3.3.3 兩代收發機之天線陣列比較 69 3.4 結語 74 第四章 結論 75 4.1 總結 75 4.2 未來發展 76 參考文獻 77

    [1] https://outlook.stpi.narl.org.tw/index/focusnews/detail/285
    [2] X. Wang, L. Kong, F. Kong, F. Qiu, M. Xia, S. Arnon and G. Chen, “Millimeter wave communication: A Comprehensive Survey,” IEEE Commun. Surveys Tuts., pp. 1-1, 2018.
    [3] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It Will Work!,” IEEE Access., vol. 1, pp. 335-349, 2013.
    [4] https://www.flnet.tw/FLNet_Sogi/article.aspx?ArticleID=6246784
    [5] X. Quan, R. Li and M. M. Tentzeris, “A broadband omnidirectional circularly polarized antenna,” IEEE Trans. Antennas Propagat., vol. 61, no. 5, pp. 2363-2370, May. 2013.
    [6] W.-W. Li and K.-W. Leung, “Omnidirectional circularly polarized dielectric resonator antenna with top-loaded alford loop for pattern diversity design,” IEEE Trans. Antennas Propagat., vol. 61, no. 8, pp. 4246-4256, Aug. 2013.
    [7] Y. Fan, X.-L. Quan, Y. Pan, Y.-H. Cui and R.-L. Li, “Wideband omnidirectional circularly polarized antenna based on tilted dipoles,” IEEE Trans. Antennas Propagat., vol. 63, no. 12, pp. 5961-5966, Dec. 2015.
    [8] C.-P. Lai, S.-C. Chiu, H.-J. Li and S.-Y. Chen, “Zeroth-order resonator antennas using inductor-loaded and capacitor-loaded CPWs,” IEEE Trans. Antennas Propagat., vol. 59, no. 9, pp. 3448-3453, Sep. 2011.
    [9] T. Keyhanpour, A. A. Heidari and M. Movahhedi, “A CPW-fed monopole based circularly polarized ZOR antenna,” ICEE Iranian Conference on Electrical Engineering, pp. 1955-1960, 2017.
    [10] J. Shi, X. Wu, X. Qing and Z.-N. Chen, “Zeroth-order resonator antennas using inductor-loaded and capacitor-loaded CPWs,” IEEE Trans. Antennas Propagat., vol. 64, no. 2, pp. 574-581, Feb. 2016.
    [11] X. Zhang, L. Ma, H. Chen and J. Yang, “Target tracking with infrared imaging and millimetre-wave radar sensor,” in Proc. IET International Radar Conference, pp. 1-8, Feb. 2013.
    [12] R. Mobus and U. Kolbe, “Multi-target multi-object tracking, sensor fusion of radar and infrared,” in Proc. IEEE Intelligent Vehicles Symposium, pp. 732-737, Jun. 2010.
    [13] A. Nowicki, “Medical diagnostic ultrasound: radar roots and recent developments,” in Proc. IEEE International Conference on Microwaves and Radar, vol. 4, pp. 320-329, May. 1998.
    [14] F. Gao, X. Feng and Y. Zheng, “Micro-doppler photoacoustic effect and sensing by ultrasound radar,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 22, no. 3, pp. 1-6, May. 2016.
    [15] T. Yano, T. Tsujimura and K. Yoshida, “Vehicle identification technique using active laser radar system,” in Proc. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 275-280, Aug. 2003.
    [16] T. Yano, T. Tsujimura, M. Mikawa and H. Suda, “Vehicle distinction using laser radar system,” in Proc. IEEE International Vehicle Electronics Conference, pp. 157-162, 2001.
    [17] M. Akita, M. Watanabe and T. Inaba, “Development of millimeter wave radar using stepped multiple frequency Complementary Phase Code and concept of MIMO configuration,” in Proc. IEEE Radar Conference, pp. 129–134, May. 2017.
    [18] A. Kanno, T. Umezawa, T. Kuri and N. Yamamoto, “Key technologies for millimeter-wave distributed RADAR system over a radio over fiber network,” in Proc. Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), pp. 1-6, Oct. 2016.
    [19] C. Carlowitz, A. Esswein, R. Weigel and M. Vossiek, “A low power pulse frequency modulated UWB radar transmitter concept based on switched injection locked harmonic sampling,” in Proc. German Microwave Conference, pp.1–4, Mar. 2012.
    [20] A. N. Gaikwad, U. S. Verulkar and K. S. Dongre, “Experimental study and analysis of stepped-frequency continuous wave based radar for through the wall detection of life signs,” in Proc. IEEE Region 10 Conference, pp. 1565-1569, Nov. 2016.
    [21] M. Slovic, B. Jokanovic and B. Kolundzija, “High efficiency patch antenna for 24 GHz anticollision radar,” in Proc. Telecommunication in ModernSatellite, Cable and Broadcasting Services, pp. 28-30, Sep. 2005.
    [22] A. Kuriyama, H. Nagaishi, H. Kuroda and K. Takano, “A high efficiency antenna with horn and lens for 77 GHz automotive long range radar,” in Proc. European Microwave Conference (EuMC), pp. 1525–1528, Oct. 2016.
    [23] T.-P. Chang, K.-L. Hung and H.-T. Chou, “A K-band FMCW radar with the receiving antenna diversity in the car detection applications,” in Proc. Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), pp. 169-172, May. 2015.
    [24] Z. Peng, L. Ran and C. Li, “A K-Band portable FMCW radar with beamforming array for short-range localization and vital-doppler targets discrimination,” IEEE Trans. Microw. Theory Tech., no. 99, Feb. 2017.
    [25] 廖華謙, 可重置耦合器與毫米波天線陣列設計, 國立台灣科技大學電機工程研究所, 碩士論文, 民國106
    [26] K. Wei, Z. Zhang, Z. Feng and M. F. Iskander, “A MNG-TL loop antenna array with horizontally polarized omnidirectional patterns,” IEEE Trans. Antennas Propagat., vol. 60, no. 6, pp. 2702-2710, Jun. 2012.
    [27] R. Ghosh, R. Pragathi, S. Ullas and S. Borra, “Intelligent transportation systems: A Survey,” in 2017 International Conference on Circuits, Controls and Communications, pp. 160-165, 2017.
    [28] S. Yasini and M.-A. Karim, “Design and simulation of a comb-line fed microstrip antenna array with low side lobe level at 770Hz for automotive collision avoidance radar,” in 2016 Fourth International Conference on Millimeter-Wave and Terahertz Technologies, pp. 87-90, 2016.
    [29] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 3rd ed. 2012.
    [30] A. Dewantari, S.-Y. Jeon, S. Kim, S. Kim, J. Kim and M.-H. Ka, “Comparison of array antenna designs for 77GHz radar applications,” in Proc. Electromagnetic Research Symposium, pp. 1092-1096, 2016.

    QR CODE