簡易檢索 / 詳目顯示

研究生: 許元儒
Yuan-Ju Hsu
論文名稱: 螺二芴與萘二醯亞胺之共軛高分子之合成及性質鑑定
Synthesis and Characterization of Spirobifluorene and Naphthalene Bisimide Conjugated Polymers
指導教授: 游進陽
Chin-Yang Yu
口試委員: 堀江正樹
Masaki Horie
施劭儒
Shao-Ju Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 115
中文關鍵詞: 有機太陽能電池量子產率紅位移分子間聚集能隙
外文關鍵詞: organic photovoltaics, quantum yield, red shift, aggregation, band gap
相關次數: 點閱:254下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文利用鈴木耦合聚合反應合成出新螺旋雙芴與萘二醯亞胺之高分子聚合物,利用螺旋雙芴與萘二醯亞胺的位置連接不同而形成不同的共軛鏈長度高分子,此共軛高分子材料表現出極具成為有機太陽能電池的潛力。經由熱重分析及示差掃描熱量分析檢測得知,此共軛高分子聚合物具有非常好的熱穩定性及低結晶性質。利用紫外-可見光譜和螢光光譜,我們發現此共軛高分子聚合物有非常低的量子產率以及溶液和固態吸收光譜中其吸收波長具有明顯的紅位移,顯示在固態中有著平面化增加而共軛長度和分子間聚集的現象。在循環伏安儀分析我們發現此高分子聚合物因為不同的共軛鏈長度而影響著最高填電子軌域、最低填電子軌域和能隙的差異。


This thesis presents an investigation of the synthesis and the properties of conjugated polymers with spirobifluorene and naphthalene bisimide were synthesized through Suzuki coupling polymerization, use 2,7-position and 2,2 'position of spirobifluorene with naphthalene bisimide link, these polymers exhibit good potential as a material of organic photovoltaics. The resulting polymers exhibit good thermal stabilities and low crystallinities by TGA and DSC measurement. The results from UV-Vis absorption and fluorescence spectra of the polymers suggest the quantum yield is very low and the red shift was found in polymers absorption spectra from solution to solid state from two effects which include planarization of the molecule with its associated increase in conjugation length, and intermolecular aggregation phenomena. Cyclic voltammetry shows that results of conjugated chains length differences due to HOMO, LUMO and band gap.

Abstrac i 中文摘要 ii Acknowledgements iii List of Content iv Chapter 1. Introduction and Aims 1 1.1 Introduction to Organic Semiconductors 2 1.2 Band theory 3 1.3 Excitation of organic semiconductors 6 1.4 Charge transport in organic semiconductors 8 1.5 Luminescence in organic semiconductors 10 1.6 Organic light emitting diodes (OLEDs) 15 1.7 Organic photovoltaic devices (OPVDs) 19 1.8 P-type semiconductors 24 1.9 N-type semiconductors 27 1.10 Aims of the project 31 Chapter 2. Results and Discussion 33 2.1 Introduction 34 2.2 Synthesis and Characterization 36 2.2.1 Synthesis of monomer 36 2.2.2 Characterization of monomer 40 2.2.3 Polymerization: Suzuki coupling reaction 55 2.2.4 Synthesis of polymers 59 2.2.5 Molecular weight and structure characterization 61 2.3 Properties of polymers 67 2.3.1 Thermal properties 67 2.3.2 Optical and electrochemical properties 69 2.3.3 Electrochemical characterization 73 Chapter 3. Conclusions 75 Chapter 4. Experimental 77 4.1 General procedures (Instrumentation and Materials) 78 4.2 Synthesis 79 References 91 Appendix 96

[1] Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J.Chem. Soc. Chem. Comm. 1977, 578.
[2] Heeger, A. Angew. Chem. Int. Ed. 2001, 40, 2591.
[3] Schimmel, T.; Schwoerer, M.; Naarmann, H. Synth. Met., 1990, 37, 1.
[4] Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.;Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539.
[5] R. B. Thapa, Ph.D., State University of New York at Buffalo, 2008; UMI Number: 3294975.
[6] Wenckebach, W.T. Essentials of Semiconductor Physics, John Wiley and Sons Ltd., 1999.
[7] Hadziioannou, G.; Van Hutten, P. F. Semiconducting Polymers -Chemistry,Physics and Engineering, Wiley-VCH, Weinheim, 1999.
[8] Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater., 2002, 14, 99.
[9] Horowitz, G. Adv. Mater., 1998, 10, 365.
[10] Br_edas, J. L.; Street, G. B. Acc. Chem. Res. 1985, 18, 309.
[11] Petty, M. C.; Bryce, M. R.; Bloor, D. Introduction to Molecular Electronics,Edward Arnold, 1995, London
[12] P. Atkins, J. de Paula, Physical Chemistry, 8th edition, Oxford Univ., New York, 2006
[13] H. Nishikiori, N. Tanaka, K. Takagi ,T. Fujii, Res. Chem. Intermed., 2003, 29, 485.
[14] Bernanose, A.; Comte, M.; Vouaux, P. Journal de Chimie Physique et de Physico-Chimie Biologique 1953, 50, 64.
[15] Pope, M.; Kallmann, H. P.; Magnante, P. Journal of Chemical Physics 1963, 38,2042.
[16] Gurnee, E. F.; Fernandez, R. T.; Dow Chemical Co. Application: US 3172862,1965.
[17] Dresner, J. RCA Rev. 1969, 30, 322.
[18] Helfrich, W.; Schneider, W. G. Physical Review Letters 1965, 14, 229.
[19] Helfrich, W.; Schneider, W. G. Journal of Chemical Physics 1966, 44, 2902.
[20] Williams, D. F.; Schadt, M. Proceedings of the IEEE 1970, 58, 476.
[21] Kampas, F. J.; Gouterman, M. Chemical Physics Letters 1977, 48, 233.
[22] Kalinowski, J.; Godlewski, J.; Dreger, Z. Applied Physics A: Solids and Surfaces1985, A37, 179.
[23] Vincett, P. S.; Barlow, W. A.; Hann, R. A.; Roberts, G. G. Thin Solid Films 1982,94, 171.
[24] Tang, C. W.; VanSlyke, S. A. Applied Physics Letters 1987, 51, 913.
[25] Bernius, M. T.; Inbasekaran, M.; O'Brien, J.; Wu, W. Advanced Materials 2000,12, 1737.
[26] Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chemistry of Materials 2004, 16, 4556.
[27] Kido, J.; Kimura, M.; Nagai, K. Science 1995, 267, 1332.
[28] Kido, J.; Matsumoto, T. Applied Physics Letters 1998, 73, 2866.
[39] Friend, R. H.; Gymer, R. W.;Holmes, A. B.;Burroughes, J. H.; Marks, R.N.;Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund,M.; Salaneck, W. R. Nature 1999, 397, 121.
[30] Baldo, M. A.; O'Brien, D. F.; Thompson, M. E.; Forrest, S. R. Phys. Rev. B1999, 60, 14 422.
[31] Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M.E.; Forrest, S. R. Nature 1998, 395, 151.
[32 ] Huang, Q.; Walzer, K.; Pfeiffer, M.; Lyssenko, V.; He, G.; Leo, K. Applied Physics Letters 2006, 88, 113515.
[33] Sun, Y.; Giebink Noel, C.; Kanno, H.; Ma, B.; Thompson Mark, E.; ForrestStephen, R. Nature 2006, 440, 908.
[34] Schwartz, G.; Pfeiffer, M.; Reineke, S.; Walzer, K.; Leo, K. Advanced Materials2007, 19, 3672.
[35] Zhou, X.; Qin, D. S.; Pfei_er, M.; Blochwitz-Nimoth, J.; Werner, A.; Drechsel, J.; Maennig, B.; Leo, K.; Bold, M.; Erk, P.; Hartmann, H. Applied Physics Letters2002, 81, 4070.
[36] He, G.; Pfei_er, M.; Leo, K.; Hofmann, M.; Birnstock, J.; Pudzich, R.; Salbeck, J. Applied Physics Letters 2004, 85, 3911.
[37] Harada, K.; Werner, A. G.; Pfei_er, M.; Bloom, C. J.; Elliott, C. M.; Leo, K. Physical Review Letters 2005, 94, 036601/1.
[38] Meerheim, R.; Walzer, K.; Pfei_er, M.; Leo, K. Applied Physics Letters 2006, 89,061111.
[39] Tang, C. W. Applied Physics Letters 1986, 48, 183
[40] Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature 1995, 376, 498.
[41] Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.
[42] Hoppe, H.; Sariciftci, N. S. J. Mater. Chem. 2004, 19, 1924.
[43] Yu, G.; Heeger, A. J. J. Appl. Phys. 1998, 78, 4510.
[44] Yang, C. Y.; Heeger, A. J. Synth. Met. 1996, 83, 85.
[45] Lee, J. K.; Ma, W. L.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.; Heeger, A. J. Journal of the American Chemical Society 2008, 130, 3619
[46] Uchida, S.; Xue, J.; Rand, B. P.; Forrest, S. R. Applied Physics Letters 2004, 84, 4218.
[47] Heutz, S.; Sullivan, P.; Sanderson, B. M.; Schultes, S. M.; Jones, T. S. Solar Energy Materials and Solar Cells 2004, 83, 229.
[48] Sullivan, P.; Heutz, S.; Schultes, S. M.; Jones, T. S. Applied Physics Letters 2004, 84, 1210.
[49] Yang, F.; Shtein, M.; Forrest, S. R. Nature Materials 2005, 4, 37.
[50] Maennig, B.; Drechsel, J.; Gebeyehu, D.; Simon, P.; Kozlowski, F.; Werner, A.; Li, F.; Grundmann, S.; Sonntag, S.; Koch, M.; Leo, K.; Pfei_er, M.; Hoppe, H.; Meissner, D.; Sariciftci, N. S.; Riedel, I.; Dyakonov, V.; Parisi, J. Applied Physics A: Materials Science & Processing 2004, 79, 1.
[51] Bundgaard, E.; Krebs, F. C. Solar Energy Materials & Solar Cells 2007, 91, 954.
[52] Coakley, K. M.; McGehee, M. D. Chemistry of Materials 2004, 16, 4533.
[53] Koster, L. J. A.; Mihailetchi, V. D.; Blom, P. W. M. Appl. Phys. Lett. 2006, 88, 093511.
[54] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, D. G. Schlom, Electron Device Letters, IEEE 1997, 18, 87.
[55] S. F. Nelson, Y. Y. Lin, D. J. Gundlach, T. N. Jackson, Applied Physics Letters 1998, 72, 1854
[56] B. Lucas, T. Trigaud, C. Videlot-Ackermann, Polymer International 2012, 61, 374; (b)H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, W. Weber, Journal of Applied Physics 2002, 92, 5259.
[57] A. Afzali, C. R. Kagan, G. P. Traub, Synthetic Metals 2005, 155, 490.
[58] D. J. Gundlach, J. E. Royer, S. K. Park, S. Subramanian, O. D. Jurchescu, B. H. Hamadani, A. J. Moad, R. J. Kline, L. C. Teague, O. Kirillov, C. A. Richter, J. G. Kushmerick, L. J. Richter, S. R. Parkin, T. N. Jackson, J. E. Anthony, Nat Mater 2008, 7, 216
[59] (a)F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, Journal of the American Chemical Society 1993, 115, 8716; (b)C. D. Dimitrakopoulos, B. K. Furman, T. Graham, S. Hegde, S. Purushothaman, Synthetic Metals 1998, 92, 47.
[60] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, S. Ponomarenko, S. Kirchmeyer, W. Weber, Advanced Materials 2003, 15, 91
[61] H. Sirringhaus, R. H. Friend, C. Wang, J. Leuninger, K. Mullen, Journal of Materials Chemistry 1999, 9, 2095.
[62] X.-C. Li, H. Sirringhaus, F. Garnier, A. B. Holmes, S. C. Moratti, N. Feeder, W. Clegg, S. J. Teat, R. H. Friend, Journal of the American Chemical Society 1998, 120, 2206., Mushrush, M., Katz, H. E., Marks, T. J., Chem. Mater. 2004, 16, 4715.
[63] K. Takimiya, Y. Kunugi, Y. Konda, N. Niihara, T. Otsubo, Journal of the American Chemical Society 2004, 126, 5084.
[64] Q. Miao, T.-Q. Nguyen, T. Someya, G. B. Blanchet, C. Nuckolls, Journal of the American Chemical Society 2003, 125, 10284.
[65] M.-H. Yoon, S. A. DiBenedetto, A. Facchetti, T. J. Marks, Journal of the American Chemical Society 2005, 127, 1348.
[66] S. Ando, R. Murakami, J.-i. Nishida, H. Tada, Y. Inoue, S. Tokito, Y. Yamashita, Journal of the American Chemical Society 2005, 127, 14996.
[67] J. H. Oh, S. Liu, Z. Bao, R. Schmidt, F. Wurthner, Applied Physics Letters 2007, 91, 212107.
[68] B. A. Jones, M. J. Ahrens, M.-H. Yoon, A. Facchetti, T. J. Marks, M. R. Wasielewski, Angewandte Chemie 2004, 116, 6523.
[69] X. Gao, C.-a. Di, Y. Hu, X. Yang, H. Fan, F. Zhang, Y. Liu, H. Li, D. Zhu, Journal of the American Chemical Society 2010, 132, 3697.
[70] T. W. Lee, Y. Byun, B. W. Koo, I. N. Kang, Y. Y. Lyu, C. H. Lee, L. Pu, S. Y. Lee, Advanced Materials 2005, 17, 2180.
[71] K. Tamao, K. Sumitani, M. Kumada, Journal of the American Chemical Society 1972, 94, 4374.
[72] N. Miyaura, A. Suzuki, Chemical Reviews 1995, 95, 2457.
[73] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature, 1990, 347, 539.
[74] Fang-Iy Wu, Rajasekhar Dodda, D. Sahadeva Reddy and Ching-Fong Shu* Department of Applied Chemistry, National Chiao Tung University, Hsin-Chu, Taiwan, 30035, R. O. C.
[75] C.-L. Chiang and C.-F. Shu, Chem. Mater., 2002, 14, 682.
[76] S. Reddy, C.-F. Shu and F.-I. Wu, J. Polym. Sci., Part A: Polym. Chem., 2002, 40, 262.
[77] C.-H. Chou, D. S. Reddy and C.-F. Shu, J. Polym. Sci., Part A: Polym. Chem, in press.
[78] R. Wu, J. S. Schumm, D. L. Pearson and J. M. Tour, J. Org. Chem., 1996, 61, 6906.

無法下載圖示 全文公開日期 2019/07/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE