簡易檢索 / 詳目顯示

研究生: 魏韶邦
Shao-Bang Wei
論文名稱: Fiber-Reinforced Gap-Graded Soil against Suffusion
Fiber-Reinforced Gap-Graded Soil against Suffusion
指導教授: 鄧福宸
Fu-Chen Teng
楊國鑫
Kuo-Hsin Yang
口試委員: 林宏達
Horn-Da Lin
何昊哲
Hao-Che Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 126
中文關鍵詞: Fiber-reinforced sandInternal stabilitySuffusionNonlinear flow
外文關鍵詞: Fiber-reinforced sand, Internal stability, Suffusion, Nonlinear flow
相關次數: 點閱:229下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Suffusion is a type of the internal erosion which involves in a selective erosion of the fine particles through the soil skeleton. To better understand the mechanism of the erosion in various soil types and evaluate the improvement of the fiber-reinforced soil under suffusion, a total number of 12 upward seepage tests on three grain size distributions (i.e., two uniform soils and one gap-graded soil) were conducted. The objectives of this study are to investigate the influence of fiber parameters, fiber content and length, on hydraulic behavior and failure modes in fiber-reinforced soil (FRS) and to establish a modified criterion to assess the internal stability of FRS. Experimental results indicates that the inclusion of the fiber can significantly decrease the permeability k and increase the Forchheimer coefficient β. Under the variation of the fiber content and length, the failure mode of suffusion, classified as internally unstable soil, changed to the failure mode of suffosion, classified as internally stable soil. With the increase in fiber content, the onset of the erosion in fines and the shift into transition flow zone were generally postponed, whereas the increase of the fiber length presented minor improvements. For suffusion, the critical hydraulic gradient of failure was increase majorly related with the fiber content; however, the which for the suffosion was increase with the fiber length. In addition, the results of modified criterion in unreinforced cases are in a good agreement with the experimental data in literatures and the which in reinforced cases owns a degree of conservatism.


Suffusion is a type of the internal erosion which involves in a selective erosion of the fine particles through the soil skeleton. To better understand the mechanism of the erosion in various soil types and evaluate the improvement of the fiber-reinforced soil under suffusion, a total number of 12 upward seepage tests on three grain size distributions (i.e., two uniform soils and one gap-graded soil) were conducted. The objectives of this study are to investigate the influence of fiber parameters, fiber content and length, on hydraulic behavior and failure modes in fiber-reinforced soil (FRS) and to establish a modified criterion to assess the internal stability of FRS. Experimental results indicates that the inclusion of the fiber can significantly decrease the permeability k and increase the Forchheimer coefficient β. Under the variation of the fiber content and length, the failure mode of suffusion, classified as internally unstable soil, changed to the failure mode of suffosion, classified as internally stable soil. With the increase in fiber content, the onset of the erosion in fines and the shift into transition flow zone were generally postponed, whereas the increase of the fiber length presented minor improvements. For suffusion, the critical hydraulic gradient of failure was increase majorly related with the fiber content; however, the which for the suffosion was increase with the fiber length. In addition, the results of modified criterion in unreinforced cases are in a good agreement with the experimental data in literatures and the which in reinforced cases owns a degree of conservatism.

ABSTRACT I ACKNOWLEDGEMENT II TABLE OF CONTENTS III LIST OF TABLES VII LIST OF FIGURES VIII CHAPTER 1 INTRODUCTION - 1 - 1.1 Research background - 1 - 1.2 Objectives - 4 - 1.3 Scope of the thesis - 4 - CHAPTER 2 LITERATURE REVIEW - 6 - 2.1 Seepage theory - 6 - 2.1.1 Darcy’s equation - 6 - 2.1.2 Forchheimer’s equation - 8 - 2.2 Hydraulic failure of hydraulic systems - 9 - 2.3 Overview of hydraulic failure - 11 - 2.4 Suffusion - 13 - 2.4.1 General concept - 13 - 2.4.2 Geometric criteria - 14 - 2.4.2.1 Istomina (1957) - 14 - 2.4.2.2 Kezdi (1979) - 14 - 2.4.2.3 Kenney and Lau (1985, 1986) - 16 - 2.4.2.4 Moraci et al. (2012) - 17 - 2.4.3 Internal stability under high fine content - 19 - 2.5 Fiber-reinforced soil - 21 - 2.5.1 General concept - 21 - 2.5.2 Geometrical definition and orientation of fiber - 22 - 2.5.3 Physical properties of fiber-reinforced soil - 23 - 2.5.4 Piping resistance against backward erosion - 24 - CHAPTER 3 EXPERIMENTAL TEST PROGRAM - 26 - 3.1 Seepage test system - 26 - 3.1.1 Permeameter - 28 - 3.1.2 Water supply system - 29 - 3.1.3 Record and measurement - 30 - 3.2 Soil properties - 31 - 3.2.1 Specific gravity - 32 - 3.2.2 Sieve analysis - 33 - 3.2.3 Relative density test - 35 - 3.2.4 Internal stability analysis - 36 - 3.3 Fiber properties - 38 - 3.4 Determination of fiber orientation - 39 - 3.5 Scanning electron microscope - 43 - 3.6 Test procedure and program - 45 - 3.6.1 Specimen preparation - 45 - 3.6.2 Test program - 47 - 3.6.3 Verification of repeatability - 48 - CHAPTER 4 TEST RESULTS - 49 - 4.1 Hydraulic properties of FRS - 49 - 4.1.1 Permeability and Forchheimer coefficients - 50 - 4.1.2 Critical hydraulic gradient - 51 - 4.2 Test results of unreinforced soil - 54 - 4.2.1 Test results of coarse sand - 55 - 4.2.2 Test results of fine sand - 57 - 4.2.3 Test results of gap-graded soil - 59 - 4.3 Test results of fiber-reinforced soil - 61 - 4.3.1 Test results of R-0.1-6 - 62 - 4.3.2 Test results of R-0.2-6 - 64 - 4.3.3 Test results of R-0.3-6 - 66 - 4.3.4 Test results of R-0.1-12 - 68 - 4.3.5 Test results of R-0.2-12 - 70 - 4.3.6 Test results of R-0.3-12 - 72 - 4.3.7 Test results of R-0.1-19 - 74 - 4.3.8 Test results of R-0.2-19 - 76 - 4.3.9 Test results of R-0.3-19 - 78 - 4.4 Summary of the test results - 80 - CHAPTER 5 DISCUSSION AND ANALYSES - 82 - 5.1 Discussion on the improvement of fiber-reinforced soil - 82 - 5.1.1 Fiber effect in permeability - 82 - 5.1.2 Fiber effect in Forchheimer coefficient - 84 - 5.1.3 Fiber effect in icr,onset - 86 - 5.1.4 Fiber effect in icr,Re = 10 - 87 - 5.1.5 Fiber effect in icr,intersect - 89 - 5.1.6 Fiber effect in icr,failure - 91 - 5.2 Modified internal stability criterion - 94 - 5.2.1 Establishment of the criterion - 94 - 5.2.2 Validation on unreinforced cases - 98 - 5.2.3 Performance of the criterion - 100 - 5.3 Suggestions for engineering applications - 102 - CHAPTER 6 CONCLUSION AND RECOMMENDATION - 103 - 6.1 Conclusion - 103 - 6.2 Recommendation for the future work - 105 - REFERENCES - 106 -

1. Åberg, B. (1993). Washout of grains from filtered sand and gravel materials. Journal of Geotechnical Engineering, 119(1), 36-53. doi:10.1061/(ASCE)0733-9410(1993)119:1(36)
2. Ahlinhan, M. F., & Achmus, M. (2010). Experimental investigation of critical hydraulic gradients for unstable soils. Paper presented at the Geotechnical Special Publication.
3. ASTM D452. (2008). Standard test method for sieve analysis of surfacing for asphalt roofing product: ASTM International, West Conshohocken, PA, USA.
4. ASTM D792. (2013). Standard test methods for density and specific gravity (relative density) of plastics by displacement: ASTM International, West Conshohocken, PA, USA.
5. ASTM D4253. (2002). Standard test methods for maximum index density and unit weight of soils using a vibratory table: ASTM International, West Conshohocken, PA, USA.
6. ASTM D4254. (2000). Standard test methods for minimum index density and unit weight of soils and calculation of relative density: ASTM International, West Conshohocken, PA, USA.
7. Bear, J. (1972). Dynamics of fluids in porous media. New York, American Elsevier Pub. Co.
8. Bonelli, S., & Nicot, F. (2013). Erosion in Geomechanics Applied to Dams and Levees.
9. Chang, D. S., & Zhang, L. M. (2013a). Critical Hydraulic Gradients of Internal Erosion under Complex Stress States. Journal of Geotechnical and Geoenvironmental Engineering, 139(9), 1454-1467. doi:10.1061/(asce)gt.1943-5606.0000871
10. Chang, D. S., & Zhang, L. M. (2013b). Extended internal stability criteria for soils under seepage. Soils and Foundations, 53(4), 569-583. doi:10.1016/j.sandf.2013.06.008
11. Chen, Z., Lyons, S. L., & Qin, G. (2001). Derivation of the forchheimer law via homogenization. Transport in Porous Media, 44(2), 325-335. doi:10.1023/A:1010749114251
12. Comiti, J., Sabiri, N. E., & Montillet, A. (2000). Experimental characterization of flow regimes in various porous media - III: Limit of Darcy's or creeping flow regime for Newtonian and purely viscous non-Newtonian fluids. Chemical Engineering Science, 55(15), 3057-3061. doi:10.1016/S0009-2509(99)00556-4
13. Consoli, N. C., Casagrande, M. D. T., & Coop, M. R. (2007). Performance of a fibre-reinforced sand at large shear strains. Geotechnique, 57(9), 751-756. doi:10.1680/geot.2007.57.9.751
14. Das, A., Jayashree, C., & Viswanadham, B. V. S. (2009). Effect of randomly distributed geofibers on the piping behaviour of embankments constructed with fly ash as a fill material. Geotextiles and Geomembranes, 27(5), 341-349. doi:10.1016/j.geotexmem.2009.02.004
15. Diambra, A., Russell, A. R., Ibraim, E., & Wood, D. M. (2007). Determination of fibre orientation distribution in reinforced sands. Geotechnique, 57(7), 623-628. doi:10.1680/geot.2007.57.7.623
16. Estabragh, A. R., Soltannajad, K., & Javadi, A. A. (2014). Improving piping resistance using randomly distributed fibers. Geotextiles and Geomembranes, 42(1), 15-24. doi:10.1016/j.geotexmem.2013.12.005
17. Fannin, R. J. (2008). Karl Terzaghi: From theory to practice in geotechnical filter design. Journal of Geotechnical and Geoenvironmental Engineering, 134(3), 267-276. doi:10.1061/(ASCE)1090-0241(2008)134:3(267)
18. Fannin, R. J., & Moffat, R. (2006). Observations on internal stability of cohesionless soils. Geotechnique, 56(7), 497-500. doi:10.1680/geot.56.7.497
19. Fannin, R. J., & Slangen, P. (2014). On the distinct phenomena of suffusion and suffosion. Géotechnique Letters, 4(4), 289-294. doi:10.1680/geolett.14.00051
20. Fannin, R. J., Slangen, P., Mehdizadeh, A., Disfani, M. M., Arulrajah, A., & Evans, R. (2015). Discussion: On the distinct phenomena of suffusion and suffosion. Géotechnique Letters, 5(3), 129-130. doi:10.1680/jgele.15.00017
21. Farahnak Langroudi, M., Soroush, A., & Shourijeh, P. T. (2015). A comparison of micromechanical assessments with internal stability/instability criteria for soils. Powder Technology, 276, 66-79. doi:10.1016/j.powtec.2015.02.014
22. Forchheimer, P. (1901). Wasserbewegung durch Boden. (45 ed.): Zeitschrift des Vereines Deutscher, Ingenieuer.
23. Foster, M., Fell, R., & Spannagle, M. (2000). The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37(5), 1000-1024.
24. Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., & Zadhoush, A. (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials, 30, 100-116. doi:10.1016/j.conbuildmat.2011.11.045
25. Ibraim, E., Diambra, A., Russell, A. R., & Muir Wood, D. (2012). Assessment of laboratory sample preparation for fibre reinforced sands. Geotextiles and Geomembranes, 34, 69-79. doi:10.1016/j.geotexmem.2012.03.002
26. Istomina, V. S. (1957). Filʹtrat︠s︡ionnai︠a︡ ustoĭchivostʹ gruntov. Moskva,: Gos. izd-vo lit-ry po stroitelʹstvy i arkhitekture.
27. Kenney, T. C., & Lau, D. (1985). Internal stability of granular filters. Canadian Geotechnical Journal, 22(2), 215-225.
28. Kenney, T. C., & Lau, D. (1986). Internal stability of granular filters: Reply. Canadian Geotechnical Journal, 23(3), 420-423. doi:10.1139/t86-068
29. Kézdi, A. r. d. (1979). Soil physics : selected topics. Amsterdam ; New York, New York: Elsevier Scientific Pub. Co. ; distributor for the U.S.A. and Canada Elsevier/North-Holland.
30. Lafleur, J., Mlynarek, J., & Rollin, A. L. (1989). Filtration of broadly graded cohesionless soils. Journal of Geotechnical Engineering, 115(12), 1747-1768. doi:10.1061/(ASCE)0733-9410(1989)115:12(1747)
31. Moraci, N., Mandaglio, M. C., & Ielo, D. (2012). A new theoretical method to evaluate the internal stability of granular soils. Canadian Geotechnical Journal, 49(1), 45-58. doi:10.1139/T11-083
32. Moutsopoulos, K. N., Papaspyros, I. N. E., & Tsihrintzis, V. A. (2009). Experimental investigation of inertial flow processes in porous media. Journal of Hydrology, 374(3-4), 242-254. doi:10.1016/j.jhydrol.2009.06.015
33. Polemio, M., & Lollino, P. (2011). Failure of infrastructure embankments induced by flooding and seepage: a neglected source of hazard. Natural Hazards and Earth System Science, 11(12), 3383-3396. doi:10.5194/nhess-11-3383-2011
34. Ruth, D., & Ma, H. (1992). On the derivation of the Forchheimer equation by means of the averaging theorem. Transport in Porous Media, 7(3), 255-264. doi:10.1007/BF01063962
35. Seguin, D., Montillet, A., Comiti, J., & Huet, F. (1998). Experimental characterization of flow regimes in various porous media-II: Transition to turbulent regime. Chemical Engineering Science, 53(22), 3897-3909. doi:10.1016/S0009-2509(98)80003-1
36. Shire, T., & O’Sullivan, C. (2012). Micromechanical assessment of an internal stability criterion. Acta Geotechnica, 8(1), 81-90. doi:10.1007/s11440-012-0176-5
37. Shukla, S. K. (2017). Fundamentals of fibre-reinforced soil engineering. New York, NY: Springer Berlin Heidelberg.
38. Sidiropoulou, M. G., Moutsopoulos, K. N., & Tsihrintzis, V. A. (2007). Determination of Forchheimer equation coefficientsa andb. Hydrological Processes, 21(4), 534-554. doi:10.1002/hyp.6264
39. Silveira, A. (1965). Analysis of the problem of washing through in protective filters. Paper presented at the Proceedings of the Sixth International Conference on Soil Mechanics and Foundation Engineering.
40. Silveira, A., De Lorena Peixoto, J., & Nogueira, J. (1975). On void size distribution of granular materials. Paper presented at the Proceedings of the Fi Fth Panamerican Conference on Soil Mechanics and Foundation Engineering.
41. Skempton, A. W., & Brogan, J. M. (1994). Experiments on piping in sandy gravels. Geotechnique, 44(3), 449-460.
42. Wang, Y., & Dallo, Y. A. H. (2014). On estimation of the constriction size distribution curve for cohesionless soils. European Journal of Environmental and Civil Engineering, 18(6), 683-698. doi:10.1080/19648189.2014.909335
43. Whitaker, S. (1996). The Forchheimer equation: A theoretical development. Transport in Porous Media, 25(1), 27-61.
44. Wrachien, D. d., & Mambretti, S. (2009). Dam-Break Problems, Solutions and Case Studies (Vol. 36): WIT Press.
45. Yang, K.-H., Adilehou, W. M., Jian, S.-T., & Wei, S.-B. (2017). Hydraulic Response of Fiber-Reinforced Sand Subject to Seepage. Geosynthetics International.
46. Yang, K.-H., & Wang, J.-Y. (2016). Experiment and statistical assessment on piping failures in soils with different gradations. Marine Georesources & Geotechnology, 35(4), 512-527. doi:10.1080/1064119x.2016.1213338
47. Zornberg, J. G. (2002). Discrete framework for limit equilibrium analysis of fibre-reinforced soil. Geotechnique, 52(8), 593-604. doi:10.1680/geot.52.8.593.38833

QR CODE