簡易檢索 / 詳目顯示

研究生: 吳昱萱
Yu-Xuan Wu
論文名稱: 半導體性錳基金屬框架材料單晶之暗電導與光電導特性研究
Dark Conductivity and Photoconductivity in Semiconducting Manganese-based Metal-Organic Framework Single Crystals
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 陳瑞山
Ruei-San Chen
李奎毅
Kuei-Yi Lee
梁文傑
Man-kit Leung
呂光烈
Kuang-Lieh Lu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 81
中文關鍵詞: 金屬有機框架材料暗電導量測光電導量測半導體性活化能
外文關鍵詞: Metal-Organic Framework, Dark conductivity, Photoconductivity, Semiconducting Behavior, Activation energy
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 第二章 材料介紹 5 第三章 實驗方法 8 一、 MnTCD形貌特性與結構特性檢測 8 (一) 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 8 (二) 雙束型聚焦式離子束系統(Dual-beam Focused-Ion Beam, FIB) 10 (三) 原子力顯微鏡(Atomic Force Microscope, AFM) 13 (四) X光粉末繞射儀(Powder X-ray Diffractometer, PXRD) 15 (五) 傅立葉轉換紅外光譜儀(Fourier-Transform Infrared Spectroscope, FTIR) 18 二、 金屬有機框架化合物元件製作 21 (一) 元件基板製作 21 (二) MnTCD微米晶體分離 21 (三) 微米晶體電極製作 23 三、 微米材料之暗電導特性研究 26 (一) 電流對電壓曲線量測(Current-Voltage Measurement) 26 (二) 熱探針量測(Hot Probe Measurement) 27 (三) 溫度變化之電性量測(Temperature-Dependent Measurement) 30 (四) 金氧半場效應電晶體量測(Metal-Oxide-Semiconductor Field Effect Transistor Measurement, MOSFET Measurement) 33 四、 微米材料之光電導特性研究 35 (一) 功率相依之光電導量測(Power-Dependent Photocurrent Measurement) 35 (二) 環境變化之光電導量測(Ambience-Dependent Photocurrent Measurement) 36 第四章 結果與討論 37 一、 MnTCD晶體之形貌與結構特性分析 37 (一) MnTCD 晶體之表面形貌 37 (二) MnTCD之晶體結構 40 二、 MnTCD之MOF元件尺寸量測 42 (一) MnTCD晶體長寬之SEM量測 42 (二) MnTCD晶體厚度之AFM量測 44 三、 MnTCD之暗電導分析 46 (一) MnTCD之電導率計算 46 (二) MnTCD之熱探針量測 51 (三) MnTCD之溫度變化暗電導量測 53 (四) MnTCD之金氧半場效應電晶體量測 58 四、 MnTCD單晶光電導特性 60 (一) MnTCD之功率相依光電導 60 (二) MnTCD於不同雷射波長下之光電導反應 64 (三) MnTCD之光電導效率 66 (四) MnTCD之環境變化光電導 72 第五章 結論 75 暗電導特性 75 光電導特性 75 參考文獻 76

[1] M. Yaghi, H. Li, “Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels”, American Chemical Society, 117, 10401-10402 (1995).
[2] Q. Yang, Q. Xu, H. L. Jiang, “Metal–Organic Frameworks Meet Metal Nanoparticles: Synergistic Effect For Enhanced Catalysis”, Chem. Soc. Rev., 46, 4774-4808 (2017).
[3] P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E. Morris, C. Serre, “Metal–Organic Frameworks In Biomedicine”, Chem. Soc. Rev., 112, 1232-1268 (2012).
[4] L. J. Small, R. C. Hill, J. L. Krumhansl, M. E. Schindelholz, Z. Chen, K. W. Chapman, X. Zhang, S. Yang, M. Schröder, T. M. Nenoff, “Reversible MOF-Based Sensors For The Electrical Detection Of Iodine Gas”, Applied Materials & Interfaces, 11, 27982-27988 (2019).
[5] J. Zhou, B. Wang, “Emerging Crystalline Porous Materials As A Multifunctional Platform For Electrochemical Energy Storage”, Chem. Soc. Rev., 46, 6927-6945 (2017).
[6] S. Kitagawa, R. Matsuda, “Chemistry Of Coordination Space Of Porous Coordination Polymers”, Coord. Chem. Rev., 251, 2490-2509 (2007).
[7] S. Horike, S. Shimomura, “Soft porous crystals”, Nature Chemistry, 1 ,695-704 (2009).
[8] A. Pathak, J. W. Shen, M. Usman, L. F. Wei, S. Mendiratta, Y. S. Chang, B. Sainbileg, C. M. Ngue, R. S. Chen, M. Hayashi, T. T. Luo, F. R. Chen, K. H. Chen, T. W. Tseng, L. C. Chen, K. L. Lu, “Integration of a (–Cu–S–)n Plane In A Metal–Organic Framework Affords High Electrical Conductivity”, Nature Com, 10, 1-7 (2019).
[9] S. Kitagawa, R. Matsuda, “Chemistry of coordination space of porous coordination polymers”, Coord. Chem. Rev., 251, 2490-2509 (2007).
[10] L. S. Xie, G. Skorupskii, M. Dincă, “Electrically Conductive Metal–Organic Frameworks”, Chem. Rev., 120, 8536-8580 (2020).
[11] V. Rubio-Giménez, S. Tatay, C. Martí-Gastaldo, “Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale”, Chem. Soc. Rev., 49, 5601-5638 (2021).
[12] E. Castaldelli, K. I. Jayawardena, D. C. Cox, G. J. Clarkson, R. I. Walton, L. L. Quang, J. Chauvin, S. R. P. Silva, G. J. F. Demets, “Electrical Semiconduction Modulated by Light in A Cobalt And Naphthalene Diimide Metal-Organic Framework”, Nature Communications, 8, 1-8 (2017).
[13] S. Wang, T. Kitao, N. Guillou, M. Wahiduzzaman, C. M. Corcos, F. Nouar, A. Tissot, L. Binet, N. Ramsahye, S. D. Vinot, S. Kitagawa, S. Seki, Y. Tsutsui, V. Briois, N. Steunou, G. Maurin, T. Uemura, C. Serre, “A Phase Transformable Ultrastable Titanium-Carboxylate Framework For Photoconduction”, Nature Communications, 9, 1-9 (2018).
[14] A. R. Millward, O. M. Yaghi, “Metal-Organic Frameworks With Exceptionally High Capacity For Storage Of Carbon Dioxide At Room Temperature”, J. Am. Chem. Soc., 127, 17998-17999 (2005)
[15] Y. C. Jung, B. Bhushan, “Mechanically Durable Carbon Nanotube−Composite Hierarchical Structures With Superhydrophobicity, Self-Cleaning, And Low-Drag”, ACS Nano, 3, 4155-4163 (2009).
[16] Y. Liu, Y. Wei, M. Liu, Y. Bai, G. Liu, X. Wang, S. Shang, W. Gao, C. Du, J. Chen, Y. Liu, “Two-Dimensional Metal-Organic Framework Film For Realizing Optoelectronic Synaptic Plasticity”, Angew. Chem. Int. Ed, 60, 1 – 7 (2021).

[17] C. Kang, M. Iqbal, S. Zhang, “Cu3(HHTP)2 c-MOF/ZnO Ultrafast Ultraviolet Photodetector for Wearable Optoelectronics”, Chem. Eur. Jour.,
[18] P. E. J. Flewitt and R. K. Wild, “Physical methods for materials characterization” , IOP Publishing, Bristol, (1994).
[19] A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron Beam Lithography in Nanoscale Fabrication: Recent Development”, IEEE Trans. Electron. Packag. Manuf, 26, 141-149 (2003).
[20] A. A. Tseng, “Recent developments in micromilling using focused ion beam technology”, J. Micromech. Microeng, 14, R15-R34 (2004).
[21] A. A. Tseng, “Recent Developments in Nanofabrication using Focused Ion Beams”, Small, 1, 924–939 (2005).
[22] F. Braet, R. D. Zanger, E. Wisse, “Drying Cells For SEM, AFM And TEM By Hexamethyldisilazane: A Study On Hepatic Endothelial Cells”, Journal Of Microscopy, 186, 84-87 (1997).
[23] J. P. Cleveland, B. Anczykowski, A. E. Schmid, V. B. Elings, “Energy dissipation in tapping-mode atomic force microscopy”, Appl. Phys. Lett. 72, 2613–2615 (1998)
[24] P. Carra, B. T. Thole, M. Altarelli, X. Wang, “X-ray Circular Dichroism And Local Magnetic Fields”, Physical Review Letters, 70, 694 (1993).
[25] B. D. Cullity, S. R. Stock, “Elements Of X-ray Diffraction”, Prentice Hall (2001).
[26] A. Beiser, “Concepts Of Modern Physics”, McGraw-Hill Education (India) Pvt Limited (2003).
[27] Y. M. Chang, H. Kim, J. H. Lee, Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers”, Appl. Phys. Lett, 91970, 211102 (2010).
[28] C. Y. Nam, D. Tham, J. E. Fischer, “Disorder Effects In Focused-Ion-Beam-Deposited Pt Contacts On GaN Nanowires”, Nano Lett. 5, 2029-2033 (2005).
[29] 王芷鈺, “半導體性鐵基金屬框架材料單晶之暗電導與光電導特性研究”, 國立臺灣科技大學應用科技研究所碩士學位論文 (2023).
[30] Donald A. Neamen, “Semiconductor Physics and Devices”, (2011)
[31] 朱煜文, “二硫化鎢層狀半導體之電子結構與電傳輸特性”, 國立臺灣科技大學應用科技研究所碩士學位論文 (2019).
[32] G. Golan, A. Axelevitch, B. Gorenstein, V. Manevych, “Hot-Probe method for evaluation of impurities concentration in semiconductors”, Micro. Jour., 37, 910-915 (2006).
[33] 林琪家, “疏水性兼半導體性鎳基金屬有機框架材料微米晶體之電性研究”, 國立臺灣科技大學應用科技研究所碩士學位論文 (2021).
[34] A. J. Clough, J. M. Skelton, C. A. Downes, A. A. de la Rosa, J. W. Yoo, A. Walsh, B. C. Melot, S. C. Marinescu, “Metallic conductivity in a two-dimensional cobalt dithiolene metal–organic framework”, J. Am. Chem. Soc., 139, 10863-10867 (2017).
[35] R. Dong, P. Han, H. Arora, M. Ballabio, M. Karakus, Z. Zhang, C. Shekhar, P. Adler, P. St. Petkov, A. Erbe, S. C. B. Mannsfeld, C. Felser, T. Heine, M. Bonn, X. Feng, E. Cánovas, “High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework”, Nature Materials, 17, 1027-1032 (2018).
[36] Y. Song, M. Xu, X. Liu, Z. Li, C. Wang, Q. Jia, Z. Zhang, M. Du, “A label-free enrofloxacin electrochemical aptasensor constructed by a semiconducting CoNi-based metal–organic framework (MOF)”, Electrochimica Acta, 368, 137609 (2021).
[37] W. Feng, W. Zheng, W. Cao, P. A. Hu, “Back Gated Multilayer InSe Transistors with Enhanced Carrier Mobilities via the Suppression of Carrier Scattering from a Dielectric Interface,” Advanced materials, Vol. 26, pp. 6587(2014).
[38] G. Wu, J. Huang, Y. Zang, J. He, G. Xu, “Porous field-effect transistors based on a semiconductive metal–organic framework”, Journal of the American Chemical Society, Vol. 139(4), 1360-1363. (2017).
[39] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, “Single-layer MoS2 transistors”, Nature Nanotechnology, VOL 6, pp. 148, ( 2011).
[40] P. Bhattacharya, “Semiconductor optoelectronic devices”, Prentice Hall, 8, 346-351 (1997).
[41] M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys, 79, 7433-7473 (1996).
[42] R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, Y. J. Yang, “Ultahigh photocurrent gain in m-axial GaN nanowires”, Appl. Phys. Lett., 91, 223106 (2007).
[43] R. S. Chen, W. C. Wang, C. H. Chan, H. P. Hsu, L. C. Tien, Y. J. Chen, “Photoconductivities in monocrystalline layered V2O5 nanowires grown by physical vapor deposition”, Nanoscale Res. Lett, 8, 443 (2013).
[44] 許光勳, “銅基金屬有機框架材料微米晶體之電傳輸性質”, 國立臺灣科技大學應用科技研究所碩士學位論文 (2020).
[45] C. Fabrega, F. Hernandez-Ramirez, J. D. Prades, R. Jimenez-Diaz, T. Andreu, J. R. Morante, “On the photoconduction properties of low 93 resistivity TiO2 nanotubes”, Nanotechnology, 21, 445703 (2010).
[46] R. S. Chen, T. H. Yang, H. Y. Chen, L. C. Chen, K. H. Chen, Y. J. Yang, C. H. Su, C. R. Lin, “Photoconduction mechanism of oxygen sensitization in InN nanowires”, Nanotechnology, 22, 425702 (2011).
[47] H. M. Huang, R. S. Chen, H. Y. Chen, T. W. Liu, C. C. Kuo, C. P. Chen, H. C. Hsu, L. C. Chen, K. H. Chen, Y. J. Yang, “Photoconductivity in single AlN nanowires by subband gap excitation”, Appl. Phys. Lett., 96, 062104 (2010).
[48] J. Liu, Y. Chen, X. Feng, R. Dong, “ Conductive 2D Conjugated Metal–Organic Framework Thin Films: Synthesis and Functions for (Opto-)electronics”,Small Structures,35,2100210 (2022).
[49] L. Giri , S. R. Rout , R. S. Varma, “Recent advancements in metal–organic frameworks integrating quantum dots (QDs@MOF) and their potential applications”, Nanotechnology Reviews,11,(2022)

無法下載圖示 全文公開日期 2029/08/12 (校內網路)
全文公開日期 2029/08/12 (校外網路)
全文公開日期 2029/08/12 (國家圖書館:臺灣博碩士論文系統)
QR CODE