簡易檢索 / 詳目顯示

研究生: 張士浤
Shih-Hong Chang
論文名稱: 奈米觸媒結構與氧氣還原電催化活性關係之研究
The Relationship between the Structure and the Electrocatalytic Activity of Nanocatalysts for the Oxygen Reduction Reaction
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
Tse-Chuan Chou
楊明長
Ming-Chang Yang
杜景順
Jing-Shan Do
王丞浩
Chen-Hao Wang
蘇威年
Wei-Nien Su
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 175
中文關鍵詞: 直接甲醇燃料電池雙金屬觸媒X光吸收光譜尺寸控制氧氣還原甲醇氧化
外文關鍵詞: DMFC, Pt, Pd., bimetallic catalysts, X-ray absorption, size control, oxygen reduction reaction, methanol oxidation reaction
相關次數: 點閱:323下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氧氣還原反應為質子交換膜燃料電池中重要反應之一,提高氧氣還原動力反應和降低鉑用量為提高耐久性與降低膜電極組成本之主要目標。故本論文研究動機為: 控制鉑團簇尺寸,並探討雙元合金異質觸媒之結構對於氧氣還原與甲醇氧化反應之關係,期望可達到上述目標。下列為本論文之研究方向: (I)以無穩定劑-液相還原法控制碳擔體鉑奈米團簇之尺寸並改善白金團簇分散性 (II) 探討不同原子組成之鉑鈀合金團簇對氧氣還原與甲醇氧化電催化活性之關係 (III) 以甲酸-液相還原法合成碳擔體鈀核-鉑金殼與鉑銥殼之核殼結構觸媒,並探討合成觸媒之氧氣還原活性與穩定性。
利用一氧化碳毒化白金觸媒之特性,在合成白金觸媒過程中導入一氧化碳氣體,抑制白金奈米團簇成長。在白金前驅物還原形成奈米核點時,由於核點具有較高表面自由能,原子將自行沉積於表面自由能高之核點或核點與核點互相團聚,以降低表面自由能。若能在長晶階段導入對核點具有強吸附力之氣體分子,可紓緩核點高表面自由能,達到抑制成長與分散團簇之效果。為了證實一氧化碳在此研究所扮演之角色,固定氣體流量調控不同一氧化碳/氬氣的流率比例 (0、 25、 50、 75、100 %) 對於白金團簇半徑與分散性的影響。由同步輻射X光吸收光譜、穿透式電子顯微鏡、光電子能譜與一氧化碳電化學氧化脫附曲線分析發現,當一氧化碳/氬氣的流率比例高於75%時可得到較佳之白金奈米團簇分散性與直徑約 2 nm之白金奈米粒子。本研究“氣體穩定劑”觀念可望應用於擔體奈米團簇尺寸控制之大規模製程上。(II)白金鈀觸媒幾何與電子結構對氧氣還原與甲醇氧化電化學活性之探討;利用調控不同原子組成合成不同白金-鈀原子分佈之奈米結構,並使用X光吸收光譜計算白金鈀合金程度與d層電子空隙率,建立電化學活性與電子、幾何之關係。旋轉盤電極量測結果討論氧氣還原與甲醇氧化反應之活性,Pt3Pd1/C與商業化白金觸媒(JM20)相比之下,有增進50%氧氣還原反應活性(協同效應),有減少90%甲醇氧化反應活性(反協同效應)。因在此比例下因具有較低之白金d層空隙率與較高的合金程度有利於氧-氧原子斷鍵與抑制形成氫氧基(-OH)的能力Pt3Pd1/C有較佳的氧氣還原活性。在甲醇氧化活性研究中顯示為幾何相依性,Pt1Pd3/C(為白金富含於殼層鈀富含於殼層之結構)具有較Pt3Pd1/C(為白金鈀原子分佈均勻之結構)低之甲醇氧化活性。此研究指出合金程度與d層電子空隙率在探索協同與反協同效應之表面反應性上,扮演重要的角色。由上述研究得之:異質金屬(鈀)加入鉑可改變幾何與電子結構而增進氧氣還原反應。故在本研究中沉積銥鉑、金殼層於鈀觸媒探討對氧氣還原活性之影響。由循環伏安圖推論銥、金加入抑制白金表面氫氧基形成,可增加氧氣還原反應,但金對氧氣還原的活性差,故只有碳擔體鈀核-鉑殼(Pd@Pt/C)、鈀核-鉑銥殼(Pd@Pt3Ir1/C)與JM20相較之下,具有增進40%氧氣還原反應活性,由穩定性測試發現碳擔體鈀核-鉑殼(Pd@Pt/C)與JM20,在3,000圈 (掃描範圍: 0-1.1 V)掃描後,電化學活性面積下降至原來之~45%,本研究指出核層結構鈀觸媒在氧氣還原操作下造成電化學溶解,對穩定性沒有明顯改善


The oxygen reduction reaction (ORR) is the one of the most significant electrochemical reactions in proton exchange membrane fuel cells (PEMFCs). The main strategies for enhancing durability and reducing the cost of membrane electrode assembly (MEAs) are to improve the ORR kinetics and the utilization of catalyst. The main focus of this work is the manipulation of the size of Pt clusters and to investigate the relationship between the structure of bimetallic heterostructured nanoparticles and their electrocatalytic activities towards the oxygen reduction and methanol oxidation reactions.
The following are the topics of research addressed in this dissertation:
1) CO assisted synthesis of finely size-controlled platinum nanoparticles - carbon monoxide (CO) retards the catalytic reactions of Pt because it behaves as a surface poison. Taking advantage of this phenomenon, we propose a new concept, namely the CO-assisted synthesis of Pt NPs, which is a wet-chemical method for achieving size-controllable clusters with high dispersion in surfactant-free solutions. To relieve the excess free energy, the existing nuclei coalesce thermodynamically to form large clusters, upon which deposition of subsequently formed nuclei occurs. In this protocol, the CO coverage on the Pt nuclei can be regulated by adjusting the CO/Ar ratio in the gas stream, this being a predominant parameter that controls the uniformity and dispersion on carbon black (Vulcan XC-72). EXAFS, XANES, XPS, TEM, CVs of anodic CO stripping supports the notion that CO coverage on the cluster surface plays a key role during the CO-assisted synthesis of Pt NPs. A sufficient level of CO (CO/Ar ≧ 75 %) not only hinders the coalescence (d < 2 nm) and deposition of nuclei but also facilitates further dispersion. We confirmed the validity of this CO-assisted synthesis for controlling the cluster size in a surfactant free solution. We believe that the concept of a “gaseous stabilizer” might be useful for preparing supported size-controllable clusters in the absence of contamination of surfactants on large scales.
2) Structural and electronic effects of carbon-supported PtxPd1-x nanoparticles on the electrocatalytic activity of the oxygen reduction reaction and on methanol tolerance: Among the PtxPd1−x/C nanocatalysts with various Pt: Pd atomic ratios (x= 0.25, 0.5 and 0.75) studied, rotating disk electrode measurements revealed that the Pt3Pd1/C nanocatalyst shows a synergistic effect on 50 % enhancement towards ORR and an antagonistic effect on 90 % reduction towards MOR compared to JM 20 Pt/C on a mass basis. The alloying extent and Pt d band vacancies of the PtxPd1−x/C nanocatalysts were explored by extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray absorption near edge structure spectroscopy (XANES), respectively. The structure-activity relationship indicates that ORR activity and methanol tolerance of the nanocatalysts strongly depend on their alloying extent and d band vacancies. The Pt3Pd1/C nanocatalyst with high alloying extent and low Pt d band vacancy represents an optimal composition for the enhanced ORR activity owing to the favourable O-O scission and the inhibited formation of oxygenated intermediates. Furthermore, MOR activity also shows the structure-dependence, such as: Pt1Pd3/C with the Ptrich-corePdrich-shell structure possesses lower MOR activity than Pt3Pd1/C nanocatalyst with the random alloy structure. In this paper, the alloying extent and d band vacancies shed new insight onto the synergistic and antagonistic effects with respect to the surface reactivity of the PtxPd1−x/C nanocatalysts.
3) Based on the knowledge gained from above-mentioned, the electrocatalytic activity toward ORR was enhanced by tailoring Pt with Pd due to the changed geometrical and electronic structures. In this study, the electrocatalytic activity toward ORR for bimetallic shell layer of Pt-M (M: Au, Ir) depositied on Pd core were investigated. The cyclic voltammogram suggested that the addition of Au and Ir inhibit the OH-formation, which may improve the ORR kinetics.The electrocatalytic activity toward ORR for Pd@Pt/C and Pd@Pt3Ir1/C was enhanced with a factor of 1.4 as compared with JM20 due to poor kinetics toward ORR for Au. We have demonstrated the decrease to ~ 45% of initial H2-ECSA for Pt/C and Pd@Pt/C after 3,000 cycles, indicating that the addition of Pd does not show the significant improvement in stability due to electrochemical dissolution of Pd.

Table of Content Abstract (Chinese).................................................................................................................... I Abstract (English).....................................................................................................................II Acknowledgement (Chinese)…………………........................................................................V Table of Contents...................................................................................................................VII List of Tables....................................................................................................................... VIII List of Schemes........................................................................................................................IX List of Figures...........................................................................................................................X Chapter 1: Introduction 1 1.1 General Aspects of Fuel Cells 1 1.2 Challenges of Polymer Electrolyte Membrane Fuel Cell (PEMFC) 10 1.3 Methanol Oxidation Reaction (MOR) 12 1.3.1 Mechanism 12 1.3.2 Benchmark and the state of the art elecocatalysts 15 1.4 Oxygen Reduction Reaction (ORR) 18 1.4.1 Mechanism 18 1.4.2 Benchmark and the state of the art elecocatalysts 23 1.5 Nucleation and growth 26 1.6 Preparation Methods 30 1.7 Motivations 40 Chapter 2: Material Characterization and Experiments 41 2.1 General Aspect of Electrochemistry 41 2.1.1 Cyclic Voltammograms 41 2.1.2 Electrochemical Surface Area 42 2.1.3 Rotating Disk Method 44 2.2 X-ray Absorption Spectroscopy (XAS): Principle, Analysis and its Applications in Nanoparticles 52 2.2.1 X-ray Absorption Near Edge Spectroscopy (XANES) 52 2.2.2 Extended X-ray Absorption Fine Structure (EXAFS) 65 2.2.3 Data Processing 68 2.2.4 Data treatment 70 2.2.5 Conversion of experimental variables, background removal and normalization 70 2.2.6 Conversion of E to k and k weighting 72 2.2.7 Fourier transformation, Fourier filtering (FF) and curve fitting (CF) 74 2.2.8 Identification of Structural Models and Atomic Distribution 77 2.3 X-ray diffraction analysis (XRD) 83 2.4 Transmission electron microscopy analysis (TEM) 85 2.5 X-ray photoemission spectroscopy 85 2.6 Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) 85 2.7 Electrode Preparation and Electrochemical Measurements 86 2.8 Chemicals 87 2.9 Structural and electronic effects of carbon-supported PtxPd1−x nanoparticles on electrocatalytic activity of oxygen reduction reaction and methanol tolerance 88 2.9.1 Synthesis of carbon-supported PtxPd1−x nanoparticles 88 2.9.2 XAS data analysis 89 2.10 CO-assisted synthesis of finely size-controlled platinum nanoparticles 90 2.10.1 Synthesis of finely size-controlled platinum nanoparticles by CO-assisted method 91 2.11 Synthesis of Pt Alloy Layer on Pd with Enhanced Electrocatalytic Activity toward Oxygen Reduction Reaction 92 2.11.1 Synthesis of Pt alloy layer on Pd by formic acid 92 Chapter 3: CO-Assisted Synthesis of Finely Size-Controlled Platinum Nanoparticles 93 3.1 Scope and Motivation 93 3.2 Results and Discussion 95 3.3 Summary 118 Chapter 4 Structural and Electronic Effects of Carbon-supported PtxPd1−x Nanoparticles on Electrocatalytic activity of Oxygen Reduction Reaction and Methanol Tolerance 119 4.1 Scope and Motivation 119 4.2 Results and Dscussion 121 4.3 Summary 139 Chapter 5 Synthesis of Pt Alloy Layer on Pd with Enhanced Stability and Electrocatalytic Activity toward Oxygen Reduction Reaction 140 5.1 Scope and Motivation 140 5.2 Results and Dscussion 141 5.3 Summary 148 Chapter 6 Conclusions 149 Chapter 7 Recommendations for Future Research 150 Reference 151 Curriculum Vitae of Author 173

(1) Bossel, U. The Birth of the Fuel Cell 1835 - 1845', 1st ed, 2000.
(2) Ledjeff, K. Brennstoffzellen: Entwicklung - Technologie–Anwendung'. 1st ed., 1995.
(3) Steele, B. C. H.; Heinzel, A. Nature 2001, 414, 345-352.
(4) Kinoshita, K. M., F.R.; Cairns, E.J. Fuel Cells - A Handbook, 1988.
(5) Tilak, B. V.; Conway, B. E.; Angerstein-Kozlowska, H. Journal of Electroanalytical Chemistry 1973, 48, 1-23.
(6) Li, N.-H.; Sun, S.-G.; Chen, S.-P. Journal of Electroanalytical Chemistry 1997, 430, 57-67.
(7) Lamy, C.; Lima, A.; LeRhun, V.; Delime, F.; Coutanceau, C.; L矇ger, J. M. Journal of Power Sources 2002, 105, 283-296.
(8) Antolini, E. Materials Chemistry and Physics 2003, 78, 563-573.
(9) Janssen, M. M. P.; Moolhuysen, J. Electrochimica Acta 1976, 21, 869-878.
(10) Parsons, R.; VanderNoot, T. Journal of Electroanalytical Chemistry 1988, 257, 9-45.
(11) Lamy, C. L., J-M.; Hahn, F.; Bedan, B.; Durand, R.; Kabbabi, A. Electrode Process IV, 1996.
(12) Ianniello, R.; Schmidt, V. M.; Stimming, U.; Stumper, J.; Wallau, A. Electrochimica Acta 1994, 39, 1863-1869.
(13) Lamy, C. L., J-M.; Srinivasan, S. Direct Methanol Fuel Cells: From a Twentieth Century Electrochemist’s Dream to a Twenty-first Century
Technology, in Modern Aspects of Electrochemistry, 2001; Vol. 34.
(14) Iwasita, T. Electrochimica Acta 2002, 47, 3663-3674.
(15) Choi, J. H.; Park, K. W.; Kwon, B. K.; Sung, Y. E. Journal of the Electrochemical Society 2003, 150, A973-A978.
(16) Zhu, J.; Cheng, F.; Tao, Z.; Chen, J. Journal of Physical Chemistry C 2008, 112, 6337-6345.
(17) Jeon, M. K.; Cooper, J. S.; McGinn, P. J. Journal of Power Sources 2008, 185, 913-916.
(18) Liu, F.; Lee, J. Y.; Zhou, W. J. Small 2006, 2, 121-128.
(19) Wang, Z. B.; Zuo, P. j.; Yin, G. P. Journal of Alloys and Compounds 2009, 479, 395-400.
(20) Eguiluz, K. I. B.; Salazar-Banda, G. R.; Miwa, D.; Machado, S. A. S.; Avaca, L. A. Journal of Power Sources 2008, 179, 42-49.
(21) Hamann, C. H. H., A.; Vielstich, W.; , 1998.
(22) Tarasevich, M. R. S., A.; Yeager, E.; Bockris, J.O.; Conway, E.E.; ; Yeager, E. K., S.U.M.; White, R.E.; Plenum: New York., 1983.
(23) Markovi, N. M.; cacute; Schmidt, T. J.; Stamenkovi, V.; Ross, P. N. Fuel Cells 2001, 1, 105-116.
(24) Wroblowa, H. S. P., Y.-C.; Razumney, G.; J. Electro. Chem. 1976, 69, 195.
(25) Bagotskii, V. S. T., M.R.; Filinovskii, V.Y.; Elektrokhimiya, 1969; Vol. 5.
(26) Yeager, E. K., S.U.M.; White, R.E.; J. Molecular Catalysis, 1986.
(27) Yeager, E. Electrochimica Acta 1984, 29, 1527-1537.
(28) LaConti, A. B. F., A.R.; Boyack, J.R. 'Solid Polymer Electrolyte Electrochemical Cells:Electrode and other Materials Considerations'. in
'Proceedings of the Symposium on "Electrode Materials and Processes for Energy
Conversion and Storage"',, 1977.
(29) Gottesfeld, S. Z., T.A.; Alkire, R.C., Gerischer, H., Kolb, D.M. and Tobias, C.W., Eds., Polymer Electrolyte Fuel Cells', in 'Advances in Electrochemical Science and Engineering, 1997.
(30) Min, M.-k.; Cho, J.; Cho, K.; Kim, H. Electrochimica Acta 2000, 45, 4211-4217.
(31) Takako, T.; Hiroshi, I.; Hiroyuki, U.; Masahiro, W. Journal of The Electrochemical Society 1999, 146, 3750-3756.
(32) Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. The Journal of Physical Chemistry B 2004, 108, 17886-17892.
(33) Wang, J. X.; Markovic, N. M.; Adzic, R. R. The Journal of Physical Chemistry B 2004, 108, 4127-4133.
(34) Hwang, B. J.; Senthil Kumar, S. M.; Chen, C.-H.; Chang, R.-W.; Liu, D.-G.; Lee, J.-F. The Journal of Physical Chemistry C 2008, 112, 2370-2377.
(35) Mukerjee, S.; Srinivasan, S.; Soriaga, M. P.; McBreen, J. The Journal of Physical Chemistry 2002, 99, 4577-4589.
(36) Aric&oacute;, A. S. S., A. K.; Kim, H.; Park, S.; Min, M.; Antonucci, V.; Appl. Surf. Sci. 2001, 172, 33.
(37) Paulus, U. A.; Wokaun, A.; Scherer, G. G.; Schmidt, T. J.; Stamenkovic, V.; Radmilovic, V.; Markovic, N. M.; Ross, P. N. The Journal of Physical Chemistry B 2002, 106, 4181-4191.
(38) Drillet, J. F.; Ee, A.; Friedemann, J.; K飆z, R.; Schnyder, B.; Schmidt, V. M. Electrochimica Acta 2002, 47, 1983-1988.
(39) Sanjeev, M.; Supramaniam, S.; Manuel, P. S.; James, M. Journal of The Electrochemical Society 1995, 142, 1409-1422.
(40) Neergat, M.; Shukla, A. K.; Gandhi, K. S. Journal of Applied Electrochemistry 2001, 31, 373-378.
(41) Mark, T. P.; Jerome, G. B.; Shimshon, G. Journal of The Electrochemical Society 1988, 135, 1431-1436.
(42) Antolini, E.; Passos, R. R.; Ticianelli, E. A. Electrochimica Acta 2002, 48, 263-270.
(43) Tae Hwang, J.; Shik Chung, J. Electrochimica Acta 1993, 38, 2715-2723.
(44) Xiao, L.; Zhuang, L.; Liu, Y.; Lu, J.; a, H. c. D. A. Journal of the American Chemical Society 2008, 131, 602-608.
(45) Aric, A. S.; Shukla, A. K.; Kim, H.; Park, S.; Min, M.; Antonucci, V. Applied Surface Science 2001, 172, 33-40.
(46) Wang, L.-L.; Johnson, D. D. Journal of the American Chemical Society 2007, 129, 3658-3664.
(47) Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Science 2007, 315, 220-222.
(48) Ye, H.; Crooks, R. M. Journal of the American Chemical Society 2005, 127, 4930-4934.
(49) Yong-Tae, K.; Kazuyoshi, O.; Koichi, H.; Tomoya, U.; Masaki, T.; Hiroyoshi, S.; Tadaoki, M. Angewandte Chemie International Edition 2006, 45, 407-411.
(50) Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G.; Ross, P. N.; Markovic, N. M. Nat Mater 2007, 6, 241-247.
(51) Stamenkovic, V. R.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M. Journal of the American Chemical Society 2006, 128, 8813-8819.
(52) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Science 2007, 315, 493-497.
(53) Chen, S.; Ferreira, P. J.; Sheng, W.; Yabuuchi, N.; Allard, L. F.; Shao-Horn, Y. Journal of the American Chemical Society 2008, 130, 13818-13819.
(54) Zhang, J. V., M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R.; Angew. Chem. Int. Ed. 2005, 44, 2.
(55) Zhang, J.; Vukmirovic, M. B.; Sasaki, K.; Nilekar, A. U.; Mavrikakis, M.; Adzic, R. R. Journal of the American Chemical Society 2005, 127, 12480-12481.
(56) Koh, S.; Strasser, P. Journal of the American Chemical Society 2007, 129, 12624-12625.
(57) Ratndeep, S.; Prasanna, M.; Nathan, H.; Peter, S. Angewandte Chemie International Edition 2007, 46, 8988-8991.
(58) Wang, C.; van der Vliet, D.; More, K. L.; Zaluzec, N. J.; Peng, S.; Sun, S.; Daimon, H.; Wang, G.; Greeley, J.; Pearson, J.; Paulikas, A. P.; Karapetrov, G.; Strmcnik, D.; Markovic, N. M.; Stamenkovic, V. R. Nano Letters, 11, 919-926.
(59) Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. Science 2009, 324, 1302-1305.
(60) Wang, C.; Chi, M.; Wang, G.; Van Der Vliet, D.; Li, D.; More, K.; Wang, H. H.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R. Advanced Functional Materials, 21, 147-152.
(61) Park, J.; Joo, J.; Soon, G. K.; Jang, Y.; Hyeon, T. Angewandte Chemie - International Edition 2007, 46, 4630-4660.
(62) Hamann, C. H. H., A.; Vielstich, W.; 'Electrochemistry', 1st ed, 199.
(63) Cassin, G.; Illy, S.; Pileni, M. P. Chemical Physics Letters 1994, 221, 205-212.
(64) Michel, F.; Pileni, M. P. Langmuir 1994, 10, 390-394.
(65) Petit, C.; Jain, T. K.; Billoudet, F.; Pileni, M. P. Langmuir 1994, 10, 4446-4450.
(66) Petit, C.; Lixon, P.; Pileni, M. P. Journal of Physical Chemistry 1993, 97, 12974-12983.
(67) Pileni, M. P. Journal of Physical Chemistry 1993, 97, 6961-6973.
(68) Pileni, M. P. Advances in Colloid and Interface Science 1993, 46, 139-163.
(69) Dumestre, F.; Chaudret, B.; Amiens, C.; Fromen, M. C.; Casanove, M. J.; Renaud, P.; Zurcher, P. Angewandte Chemie - International Edition 2002, 41, 4286-4289.
(70) Dumestre, F.; Chaudret, B.; Amiens, C.; Respaud, M.; Fejes, P.; Renaud, P.; Zurcher, P. Angewandte Chemie - International Edition 2003, 42, 5213-5216.
(71) En羹st羹n, B. V.; Turkevich, J. Journal of the American Chemical Society 1963, 85, 3317-3328.
(72) Chen, J. P.; Sorensen, C. M.; Klabunde, K. J.; Hadjipanayis, G. C. Journal of Applied Physics 1994, 76, 6316-6318.
(73) Petit, C.; Taleb, A.; Pileni, M. P. Advanced Materials 1998, 10, 259-261.
(74) Pileni, M. P.; Ninham, B. W.; Gulik-Krzywicki, T.; Tanori, J.; Lisiecki, I.; Filankembo, A. Advanced Materials 1999, 11, 1358-1362.
(75) Maillard, M.; Giorgio, S.; Pileni, M. P. Advanced Materials 2002, 14, 1084-1086.
(76) Pileni, M. P. Nature Materials 2003, 2, 145-150.
(77) Ingert, D.; Pileni, M. P. Advanced Funtional Materials 2001, 11, 136-139.
(78) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annual Review of Materials Science 2000, 30, 545-610.
(79) Reetz, M. T.; Westermann, E. Angewandte Chemie - International Edition 2000, 39, 165-168.
(80) Zhao, M.; Crooks, R. M. Angewandte Chemie - International Edition 1999, 38, 364-366.
(81) Cao, Y. C.; Jin, R.; Mirkin, C. A. Science 2002, 297, 1536-1540.
(82) Demers, L. M.; Ginger, D. S.; Park, S. J.; Li, Z.; Chung, S. W.; Mirkin, C. A. Science 2002, 296, 1836-1838.
(83) Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078-1081.
(84) Daniel, M. C.; Astruc, D. Chemical Reviews 2004, 104, 293-346.
(85) Schmid, G. Chemical Reviews 1992, 92, 1709-1727.
(86) Schmidt, T. J.; Noeske, M.; Gasteiger, H. A.; Behm, R. J.; Britz, P.; Brijoux, W.; Bonnemann, H. Langmuir 1997, 13, 2591-2595.
(87) Vogel, W.; Britz, P.; Bonnemann, H.; Rothe, J.; Hormes, J. The Journal of Physical Chemistry B 1997, 101, 11029-11036.
(88) B&ouml;nnemann, H. B., R.; Britz, P.; Endruschat, U.; Mortel, R.; Paulus, U. A.; Feldmeyer, G. J.; Schmidt, T. J.; J. New Mater. Electrochem. Syst. 2000, 3, 199.
(89) Zhang, X.; Chan, K.-Y. Chemistry of Materials 2002, 15, 451-459.
(90) Liu, Y.; Qiu, X.; Chen, Z.; Zhu, W. Electrochemistry Communications 2002, 4, 550-553.
(91) Martino, A.; Yamanaka, S. A.; Kawola, J. S.; Loy, D. A. Chemistry of Materials 1997, 9, 423-429.
(92) Tsai, Y. W.; Tseng, Y. L.; Sarma, L. S.; Liu, D. G.; Lee, J. F.; Hwang, B. J. The Journal of Physical Chemistry B 2004, 108, 8148-8152.
(93) Hwang, B.-J.; Tsai, Y.-W.; Sarma, L. S.; Tseng, Y.-L.; Liu, D.-G.; Lee, J.-F. The Journal of Physical Chemistry B 2004, 108, 20427-20434.
(94) Chen, C.-H.; Hwang, B.-J.; Wang, G.-R.; Sarma, L. S.; Tang, M.-T.; Liu, D.-G.; Lee, J.-F. The Journal of Physical Chemistry B 2005, 109, 21566-21575.
(95) Boxall, D. L.; Deluga, G. A.; Kenik, E. A.; King, W. D.; Lukehart, C. M. Chemistry of Materials 2001, 13, 891-900.
(96) Liu, Z.; Lee, J. Y.; Chen, W.; Han, M.; Gan, L. M. Langmuir 2003, 20, 181-187.
(97) Yu, W.; Tu, W.; Liu, H. Langmuir 1998, 15, 6-9.
(98) Wang, X.; Hsing, I. M. Electrochimica Acta 2002, 47, 2981-2987.
(99) Sarma, L. S.; Lin, T. D.; Tsai, Y.-W.; Chen, J. M.; Hwang, B. J. Journal of Power Sources 2005, 139, 44-54.
(100) Shen, P. K.; Tian, Z. Electrochimica Acta 2004, 49, 3107-3111.
(101) Doudna, C. M.; Bertino, M. F.; Tokuhiro, A. T. Langmuir 2002, 18, 2434-2435.
(102) Chi, C.-F.; Yang, M.-C.; Weng, H.-S. Journal of Power Sources 2009, 193, 462-469.
(103) Lu, S.; Lonergan, W. W.; Bosco, J. P.; Wang, S.; Zhu, Y.; Xie, Y.; Chen, J. G. Journal of Catalysis 2008, 259, 260-268.
(104) Bock, C.; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R. Journal of the American Chemical Society 2004, 126, 8028-8037.
(105) Watanabe, M.; Uchida, M.; Motoo, S. Journal of Electroanalytical Chemistry 1987, 229, 395-406.
(106) Toshima, N.; Hirakawa, K. Polymer Journal 1999, 31, 1127-1132.
(107) Duff, D. G.; Mallat, T.; Schneider, M.; Baiker, A. Applied Catalysis A: General 1995, 133, 133-148.
(108) Naoki Toshima, M. K., Yutaka Yamada and Hidefumi Hirai Chemistry Letters 1981, 793-796
(109) Toshima, N. K., M.; Yamada, Y.; Hirai, H. Chem. Lett. 1989, 1769.
(110) Zhao, B. T., N. Chem. Express 1995, 5, 721.
(111) Toshima, N. J. Macromol. Sci. Chem. 1990, 1225.
(112) Belloni, J. M., M.; Remita, H.; Marignier, J. L.; Delcourt, M. O. New J. Chem. 1998, 1239.
(113) Treguer, M.; de Cointet, C.; Remita, H.; Khatouri, J.; Mostafavi, M.; Amblard, J.; Belloni, J.; de Keyzer, R. The Journal of Physical Chemistry B 1998, 102, 4310-4321.
(114) Markovic, N. M.; Gasteiger, H. A.; Ross, P. N. The Journal of Physical Chemistry 2002, 99, 3411-3415.
(115) Bard, A. J. F., L.R. Electrochemical Methods - Fundamentals and Applications', 2nd ed., 2001.
(116) Levich, V. G. 'Physicochemical Hydrodynamics', 2nd ed., 1962.
(117) Pleskov, Y. V. F., V.Y. 'The Rotating Disc Electrode', 1st ed,, 1976.
(118) Hirai, H. T., N.;Iwasawa, D. Reidel, Dordrecht, in Tailored Metal Catalysts, ed., 1986.
(119) Hirai, H. J. Macromol. Sci., Chem. 1979, 633.
(120) Gilman, S. The Journal of Physical Chemistry 2002, 67, 78-84.
(121) Gilman, S. In Electroanaylytical Chemistry – A Series of Advances, A. J. Bard (Ed),, 1967.
(122) Toshima, N. Y., T. New J. Chem. 1998, 22, 1179.
(123) Via, G. H. S., J. H. in: Y. Iwasawa (Ed,); X-ray Absorption Fine Structure for Catalysts and Surfaces., 1996.
(124) Bazin, D. S., D.; Rehr, J. J. J. Phys. Chem. B 1997, 101, 11040.
(125) Park, S.; Wieckowski, A.; Weaver, M. J. Journal of the American Chemical Society 2003, 125, 2282-2290.
(126) Toshima, N.; Yonezawa, T.; Harada, M.; Asakura, K.; Iwasawa, Y. Chemistry Letters 1990, 19, 815-818.
(127) Lang, H.; Maldonado, S.; Stevenson, K. J.; Chandler, B. D. Journal of the American Chemical Society 2004, 126, 12949-12956.
(128) Duteil, A.; Queau, R.; Chaudret, B.; Mazel, R.; Roucau, C.; Bradley, J. S. Chemistry of Materials 2002, 5, 341-347.
(129) Lu, L.; Sun, G.; Zhang, H.; Wang, H.; Xi, S.; Hu, J.; Tian, Z.; Chen, R. Journal of Materials Chemistry 2004, 14, 1005-1009.
(130) Polak, M.; Rubinovich, L. Surface Science Reports 2000, 38, 127-194.
(131) Touroude, R. G., P.; Maire, G.; Kizling, J.; Boutonnet-Kizling, M.; Stenius, P. Colloids Surf. 1992, 67, 9.
(132) Harada, M.; Asakura, K.; Ueki, Y.; Toshima, N. The Journal of Physical Chemistry 2002, 96, 9730-9738.
(133) Waseda, Y. Novel Application of Anomalous X-ray Scattering for Structural Characterization of Disordered Material., 1984.
(134) Bazin, D. S., D.; Rehr, J. J. Jpn. J. Appl. Phys. 1993, 32, 251.
(135) Shido, T.; Prins, R. Current Opinion in Solid State and Materials Science 1998, 3, 330-335.
(136) Bucher, J. P.; van der Klink, J. J. Physical Review B 1988, 38, 11038.
(137) Tong, Y. Y. M., G. A.; van der Klink, J. J. J. Phys. D 1994, 6, L533.
(138) Rolison, D. R.; Hagans, P. L.; Swider, K. E.; Long, J. W. Langmuir 1999, 15, 774-779.
(139) Koningsberger, D. C. P., R. 1988, P126.
(140) Camara, G. A.; Giz, M. J.; Paganin, V. A.; Ticianelli, E. A. Journal of Electroanalytical Chemistry 2002, 537, 21-29.
(141) Russell, A. E.; Rose, A. Chemical Reviews 2004, 104, 4613-4636.
(142) Hills, C. W.; Nashner, M. S.; Frenkel, A. I.; Shapley, J. R.; Nuzzo, R. G. Langmuir 1999, 15, 690-700.
(143) Bian, C.-R.; Suzuki, S.; Asakura, K.; Ping, L.; Toshima, N. The Journal of Physical Chemistry B 2002, 106, 8587-8598.
(144) Hwang, B.-J.; Sarma, L. S.; Chen, J.-M.; Chen, C.-H.; Shih, S.-C.; Wang, G.-R.; Liu, D.-G.; Lee, J.-F.; Tang, M.-T. Journal of the American Chemical Society 2005, 127, 11140-11145.
(145) Rehr, J. J.; Albers, R. C. Reviews of Modern Physics 2000, 72, 621.
(146) Messiah, A. Quantum Mechanics, 1966.
(147) Prins, J. 1965, 12.
(148) Journal of Synchrotron Radiation 1999, 6, 123-134.
(149) Ankudinov, A. L.; Rehr, J. J.; Low, J. J.; Bare, S. R. Topics in Catalysis 2002, 18, 3-7.
(150) Bazin, D.; Sayers, D.; Rehr, J. J.; Mottet, C. The Journal of Physical Chemistry B 1997, 101, 5332-5336.
(151) Ankudinov, A. L.; Rehr, J. J.; John, J. L.; Simon, R. B. The Journal of Chemical Physics 2002, 116, 1911-1919.
(152) Bazin, D.; Rehr, J. J. The Journal of Physical Chemistry B 2003, 107, 12398-12402.
(153) Horsely, J. A. J. Chem. Phys. 1982, 76, 451.
(154) Mansour, A. N.; Cook, J. W.; Sayers, D. E. The Journal of Physical Chemistry 2002, 88, 2330-2334.
(155) Brown, M.; Peierls, R. E.; Stern, E. A. Physical Review B 1977, 15, 738.
(156) McMaster, W. H. K. D. G., N.; Hubell, J. H.
(157) Sayers, D. E.; Stern, E. A.; Lytle, F. W. Physical Review Letters 1971, 27, 1204.
(158) Teo, B.-K.; Lee, P. A. Journal of the American Chemical Society 2002, 101, 2815-2832.
(159) Teo, B. K. 1986.
(160) Lee, P. A.; Beni, G. Physical Review B 1977, 15, 2862.
(161) Ankudinov, A. L.; Rehr, J. J.; Low, J.; Bare, S. R. Physical Review Letters 2001, 86, 1642.
(162) Hwang, B. J.; Tsai, Y. W.; Sarma, L. S.; Chen, C. H.; Lee, J. F.; Strehblow, H. H. The Journal of Physical Chemistry B 2004, 108, 15096-15102.
(163) Chen, T.; Barton, S. C.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. Journal of the American Chemical Society 2001, 123, 8630-8631.
(164) Nashner, M. S.; Frenkel, A. I.; Adler, D. L.; Shapley, J. R.; Nuzzo, R. G. Journal of the American Chemical Society 1997, 119, 7760-7771.
(165) Toshima, N.; Harada, M.; Yonezawa, T.; Kushihashi, K.; Asakura, K. The Journal of Physical Chemistry 2002, 95, 7448-7453.
(166) Arenz, M.; Stamenkovic, V.; Schmidt, T. J.; Wandelt, K.; Ross, P. N.; Markovic, N. M. Physical Chemistry Chemical Physics 2003, 5, 4242-4251.
(167) Tjerkstra, R. W.; de Boer, M.; Berenschot, E.; Gardeniers, J. G. E.; van den Berg, A.; Elwenspoek, M. C. Electrochimica Acta 1997, 42, 3399-3406.
(168) Newville, M.; Ravel, B.; Haskel, D.; Rehr, J. J.; Stern, E. A.; Yacoby, Y. Physica B: Physics of Condensed Matter 1995, 208-209, 154-156.
(169) Zabinsky, S. I.; Rehr, J. J.; Ankudinov, A.; Albers, R. C.; Eller, M. J. Physical Review B 1995, 52, 2995-3009.
(170) Srivastava, R.; Mani, P.; Hahn, N.; Strasser, P. Angewandte Chemie - International Edition 2007, 46, 8988-8991.
(171) Palkovits, R.; Antonietti, M.; Kuhn, P.; Thomas, A.; Sch羹th, F. Angewandte Chemie - International Edition 2009, 48, 6909-6912.
(172) Wu, B.; Hu, D.; Kuang, Y.; Liu, B.; Zhang, X.; Chen, J. Angewandte Chemie - International Edition 2009, 48, 4751-4754.
(173) Guo, Y. G.; Hu, J. S.; Wan, L. J. Advanced Materials 2008, 20, 2878-2887.
(174) Kim, Y. T.; Ohshima, K.; Higashimine, K.; Uruga, T.; Takata, M.; Suematsu, H.; Mitani, T. Angewandte Chemie - International Edition 2006, 45, 407-411.
(175) Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. Angewandte Chemie - International Edition 2008, 47, 3588-3591.
(176) Chen, J.; Lim, B.; Lee, E. P.; Xia, Y. Nano Today 2009, 4, 81-95.
(177) Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P.; Somorjai, G. A. Nano Letters 2007, 7, 3097-3101.
(178) Lamer, V. K.; Dinegar, R. H. Journal of the American Chemical Society 1950, 72, 4847-4854.
(179) Polte, J.; Ahner, T. T.; Delissen, F.; Sokolov, S.; Emmerling, F.; Th羹nemann, A. F.; Kraehnert, R. Journal of the American Chemical Society, 132, 1296-1301.
(180) Ren, J.; Tilley, R. D. Journal of the American Chemical Society 2007, 129, 3287-3291.
(181) Peng, Z.; Yang, H. Nano Today 2009, 4, 143-164.
(182) Park, J.; Lee, E.; Hwang, N. M.; Kang, M.; Sung, C. K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hyeon, T. Angewandte Chemie - International Edition 2005, 44, 2872-2877.
(183) Bigall, N. C.; H瓣rtling, T.; Klose, M.; Simon, P.; Eng, L. M.; Eychm羹ller, A. Nano Letters 2008, 8, 4588-4592.
(184) Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Nano Letters 2001, 1, 207-211.
(185) Xiong, Y.; Cai, H.; Wiley, B. J.; Wang, J.; Kim, M. J.; Xia, Y. Journal of the American Chemical Society 2007, 129, 3665-3675.
(186) Schmidt, T. J.; Noeske, M.; Gasteiger, H. A.; Behm, R. J.; Britz, P.; Brijoux, W.; B繹nnemann, H. Langmuir 1997, 13, X-2595.
(187) Baschuk, J. J.; Li, X. International Journal of Energy Research 2001, 25, 695-713.
(188) Heiz, U.; Sanchez, A.; Abbet, S.; Schneider, W. D. Journal of the American Chemical Society 1999, 121, 3214-3217.
(189) Chen, M.; Xing, Y. Langmuir 2005, 21, 9334-9338.
(190) Song, H.; Rioux, R. M.; Hoefelmeyer, J. D.; Komor, R.; Niesz, K.; Grass, M.; Yang, P.; Somorjai, G. A. Journal of the American Chemical Society 2006, 128, 3027-3037.
(191) Sharpe, L. R.; Heineman, W. R.; Elder, R. C. Chemical Reviews 1990, 90, 705-722.
(192) De Groot, F. Chemical Reviews 2001, 101, 1779-1808.
(193) Wang, D. Y.; Chen, C. H.; Yen, H. C.; Lin, Y. L.; Huang, P. Y.; Hwang, B. J.; Chen, C. C. Journal of the American Chemical Society 2007, 129, 1538-1540.
(194) Hwang, B. J.; Sarma, L. S.; Chen, J. M.; Chen, C. H.; Shin, S. C.; Wang, Q. R.; Liu, D. G.; Lee, J. F.; Tang, M. T. Journal of the American Chemical Society 2005, 127, 11140-11145.
(195) Hwang, B. J.; Sarma, L. S.; Wang, G. R.; Chen, C. H.; Liu, D. G.; Sheu, H. S.; Lee, J. F. Chemistry - A European Journal 2007, 13, 6255-6264.
(196) Lai, F. J.; Chou, H. L.; Sarma, L. S.; Wang, D. Y.; Lin, Y. C.; Lee, J. F.; Hwang, B. J.; Chen, C. C. Nanoscale, 2, 573-581.
(197) Lai, F. J.; Su, W. N.; Sarma, L. S.; Liu, D. G.; Hsieh, C. A.; Lee, J. F.; Hwang, B. J. Chemistry - A European Journal, 16, 4602-4611.
(198) Reifsnyder, S. N.; Lamb, H. H. Journal of Physical Chemistry B 1999, 103, 321-329.
(199) Mansour, A. N.; Cook Jr, J. W.; Sayers, D. E. Journal of Physical Chemistry 1984, 88, 2330-2334.
(200) Mason, M. G. Physical Review B 1983, 27, 748-762.
(201) Eberhardt, W.; Fayet, P.; Cox, D. M.; Fu, Z.; Kaldor, A.; Sherwood, R.; Sondericker, D. Physical Review Letters 1990, 64, 780-783.
(202) Wertheim, G. K.; Dicenzo, S. B.; Youngquist, S. E. Physical Review Letters 1983, 51, 2310-2313.
(203) Wertheim, G. K.; DiCenzo, S. B. Physical Review B 1988, 37, 844-847.
(204) Mavrikakis, M.; Hammer, B.; N繪rskov, J. K. Physical Review Letters 1998, 81, 2819-2822.
(205) Maillard, F.; Eikerling, M.; Cherstiouk, O. V.; Schreier, S.; Savinova, E.; Stimming, U. Faraday Discussions 2004, 125, 357-377.
(206) Becerra, L. R.; Klug, C. A.; Slichter, C. P.; Sinfelt, J. H. Journal of Physical Chemistry 1993, 97, 12014-12019.
(207) Radmilovic, V.; Gasteiger, H. A.; Ross, P. N. Journal of Catalysis 1995, 154, 98-106.
(208) Gottesfeld, S.; Pafford, J. Journal of the Electrochemical Society 1988, 135, 2651-2652.
(209) Hogarth, M. P.; Ralph, T. R. Platinum Metals Review 2002, 46, 146-164.
(210) Iwasita, T.; Nart, F. C. Journal of Electroanalytical Chemistry 1991, 317, 291-298.
(211) Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Science 1998, 280, 1735-1737.
(212) Kauranen, P. S.; Skou, E. Journal of Electroanalytical Chemistry 1996, 408, 189-198.
(213) Ren, X.; Zelenay, P.; Thomas, S.; Davey, J.; Gottesfeld, S. Journal of Power Sources 2000, 86, 111-116.
(214) Aric癡, A. S.; Cret穫, P.; Antonucci, P. L.; Antonucci, V. Electrochemical and Solid-State Letters 1998, 1, 66-68.
(215) Bittins-Cattaneo, B.; Wasmus, S.; Lopez-Mishima, B.; Vielstich, W. Journal of Applied Electrochemistry 1993, 23, 625-630.
(216) Chu, D.; Gilman, S. Journal of the Electrochemical Society 1996, 143, 1685-1690.
(217) N繪rskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; J籀nsson, H. Journal of Physical Chemistry B 2004, 108, 17886-17892.
(218) Lima, F. H. B.; Zhang, J.; Shao, M. H.; Sasaki, K.; Vukmirovic, M. B.; Ticianelli, E. A.; Adzic, R. R. Journal of Physical Chemistry C 2007, 111, 404-410.
(219) Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Angewandte Chemie - International Edition 2005, 44, 2132-2135.
(220) Chen, S.; Sheng, W.; Yabuuchi, N.; Ferreira, P. J.; Allard, L. F.; Shao-Horn, Y. Journal of Physical Chemistry C 2009, 113, 1109-1125.
(221) Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; N繪rskov, J. K. Angewandte Chemie - International Edition 2006, 45, 2897-2901.
(222) Hwang, B. J.; Kumar, S. M. S.; Chen, C. H.; Chang, R. W.; Liu, D. G.; Lee, J. F. Journal of Physical Chemistry C 2008, 112, 2370-2377.
(223) Chen, W.; Kim, J.; Sun, S.; Chen, S. Journal of Physical Chemistry C 2008, 112, 3891-3898.
(224) Toda, T.; Igarashi, H.; Watanabe, M. Journal of Electroanalytical Chemistry 1999, 460, 258-262.
(225) Li, H.; Xin, Q.; Li, W.; Zhou, Z.; Jiang, L.; Yang, S.; Sun, G. Chemical Communications 2004, 2776-2777.
(226) Li, H.; Sun, G.; Li, N.; Sun, S.; Su, D.; Xin, Q. Journal of Physical Chemistry C 2007, 111, 5605-5617.
(227) Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. Journal of Physical Chemistry B 2004, 108, 10955-10964.
(228) Zhang, L.; Lu, T.; Bao, J.; Tang, Y.; Li, C. Electrochemistry Communications 2006, 8, 1625-1627.
(229) Weir, M. G.; Knecht, M. R.; Frenkel, A. I.; Crooks, R. M. Langmuir, 26, 1137-1146.
(230) Mansour, A. N.; Cook Jr, J. W.; Sayers, D. E.; Emrich, R. J.; Katzer, J. R. Journal of Catalysis 1984, 89, 462-469.
(231) Ankudinov, A. L.; Rehr, J. J.; Low, J. J.; Bare, S. R. Journal of Synchrotron Radiation 2001, 8, 578-580.
(232) Van Bokhoven, J. A.; Miller, J. T. Journal of Physical Chemistry C 2007, 111, 9245-9249.
(233) Hara, M.; Linke, U.; Wandlowski, T. Electrochimica Acta 2007, 52, 5733-5748.

QR CODE