簡易檢索 / 詳目顯示

研究生: 江祿檠
Lu-Ching Chiang
論文名稱: IEEE 802.11be 系統上行正交分頻多重接取隨機存取的資源配置
Resource Allocation for Uplink OFDMA-based Random Access in IEEE 802.11be Systems
指導教授: 鄭瑞光
Ray-Guang Cheng
口試委員: 曾建超
Chien-Chao Tseng
呂政修
Jenq-Shiou Leu
王瑞堂
Jui-Tang Wang
鄭瑞光
Ray-Guang Cheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 45
中文關鍵詞: IEEE 802.11be上行正交分頻多重接取隨機存取資源配置
外文關鍵詞: IEEE 802.11be, Uplink OFDMA-based random access mechanism, Resource allocation
相關次數: 點閱:305下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

IEEE 802.11be標準的目的是在有大量站點(STA)的無線網絡中實現極高的吞吐量(EHT)和低延遲。本研究論文提出了一個分析模型,研究在基於OFDMA的上行隨機接入(UORA)系統中,關聯和非關聯STA的頻域和時域隨機接入資源單元(RA-RU)分配方案的瞬態性能。在這項研究中,我們評估了總體接入成功概率和總體平均接入延遲作為性能指標。這些指標為資源分配方案的效率和有效性提供了有價值的見解。此外,我們根據這些指標定義了一個效用函數來優化分配過程。利用所提出的分析模型,我們可以彈性地選擇分配方案,並確定了在不同流量負荷下分配給兩類STA的RU比例。我們的研究結果發現在頻域上的資源單位較不充足時,時域分配方案普遍優於頻域分配方;而當頻域上的資源較多時,會偏好使用頻域分配方案。


The IEEE 802.11be standard aims to achieve extremely high throughput (EHT) and low delays in wireless networks with massive stations (STAs). This research paper presents an analytical model to investigate the transient performance of frequency domain and time-domain random access resource unit (RA-RU) allocation schemes for both associated and non-associated STAs in uplink OFDMA-based random access (UORA) system. In this study, we evaluate the overall access success probability and overall average access delay as performance metrics. These metrics provide valuable insights into the efficiency and effectiveness of the resource allocation schemes. Furthermore, we define a utility function based on these metrics to optimize the allocation process. Using the proposed analytical model, have the flexibility to change the allocation schemes in time-domain allocation(TDA) and frequency-domain allocation(FDA) and determine the ratio of RUs allocated to the two types of STAs under different traffic loads. The TDA scheme typically outperforms the FDA scheme with fewer RUs in the frequency domain. Conversely, the preference shifts towards FDA when higher RUs in frequency domain are involved.

Recommendation Letter ii Approval Letter iii Abstract in Chinese iii Abstract in English iv Acknowledgements v Contents vi List of Figures viii List of Tables x 1 Introduction 1 2 System Model 5 2.0.1 UORA Protocol 5 2.0.2 Modeling of UORA protocol 8 3 Analytical Model 10 3.1 General Model 10 3.1.1 Time-domain RU allocation 13 3.1.2 Frequency-domain RU allocation 14 3.1.3 OCW settings and controlled variable 14 3.1.4 Utility function 15 4 Numerical Results 18 5 Conclusions 32 References 33

[1] IEEE, “Ieee standard for information technology–telecommunications and information exchange be-
tween systems local and metropolitan area networks–specific requirements part 11: Wireless lan
medium access control (mac) and physical layer (phy) specifications amendment 1: Enhancements for
high-efficiency wlan,” IEEE Std 802.11ax-2021 (Amendment to IEEE Std 802.11-2020), pp. 1–767,
2021.
[2] IEEE, “IEEE P802.11be/D2.1 Draft standard for information technology –Telecommunications and
information exchange between systems –Local and metropolitan area networks –Specific require-
ments –Part 11: Wireless LAN medium access control(MAC) and physical layer (PHY) specifi-
cations –Amendment 8: Enhancements for extremely high throughput (EHT).” https://www.
techstreet.com/standards/ieee-p802-11be?product_id=2524517#full.
[3] E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, “A tutorial on ieee 802.11ax high efficiency
wlans,” IEEE Communications Surveys Tutorials, vol. 21, no. 1, pp. 197–216, 2019.
[4] R. Ali, N. Shahin, R. Bajracharya, B.-S. Kim, and S. W. Kim, “A self-scrutinized backoff mechanism
for ieee 802.11ax in 5g unlicensed networks,” Sustainability, vol. 10, no. 4, 2018.
[5] R. Ali, N. Shahin, Y. B. Zikria, B.-S. Kim, and S. W. Kim, “Deep reinforcement learning paradigm
for performance optimization of channel observation–based mac protocols in dense wlans,” IEEE
Access, vol. 7, pp. 3500–3511, 2019.
[6] C. Q. Z. Y. ZHENG Yuan, WANG Jiabin, “Retransmission number aware channel access scheme for
ieee 802.11ax based wlan,” Chinese Journal of Electronics, vol. 29, no. 2020-2-351, p. 351, 2020.
[7] D. Xie, J. Zhang, A. Tang, and X. Wang, “Multi-dimensional busy-tone arbitration for ofdma random
access in ieee 802.11ax,” 2020.
[8] L. Lanante, C. Ghosh, and S. Roy, “Hybrid ofdma random access with resource unit sensing for next-
gen 802.11ax wlans,” IEEE Transactions on Mobile Computing, vol. 20, no. 12, pp. 3338–3350, 2021.
[9] G. Ding, J. Yuan, J. Bao, and G. Yu, “Lstm-based active user number estimation and prediction for
cellular systems,” IEEE Wireless Communications Letters, vol. 9, no. 8, pp. 1258–1262, 2020.
[10] C.-H. Wei, G. Bianchi, and R.-G. Cheng, “Modeling and analysis of random access channels with
bursty arrivals in ofdma wireless networks,” IEEE Transactions on Wireless Communications, vol. 14,
no. 4, pp. 1940–1953, 2015.
[11] G. Naik, S. Bhattarai, and J.-M. Park, “Performance analysis of uplink multi-user ofdma in ieee
802.11ax,” in 2018 IEEE International Conference on Communications (ICC), pp. 1–6, 2018.
[12] S. Bhattarai, G. Naik, and J.-M. J. Park, “Uplink resource allocation in ieee 802.11ax,” in ICC 2019 -
2019 IEEE International Conference on Communications (ICC), pp. 1–6, 2019.
33
[13] B. S. F. R. G. Cheng, C. M. Yang and R. Harwahyu, “Uplink ofdma-based random access mechanism
with bursty arrivals for ieee 802.11ax systems,” in IEEE Networking Letters, pp. vol. 4, no. 1, pp.
34–38, March 2022.
[14] L.-P. Yu, “Performance analysis of packet reservation mechanism for ieee 802.11ax uplink ofdma-
based random access (uora),” in Master Thesis, NTUST, Nov. 2020.
[15] S.-Y. HUANG, “Grouping-based uora for ieee 802.11be system,” in Master Thesis, NTUST, 2022.
[16] A. Koubaa, M. Alves, and E. Tovar, “A comprehensive simulation study of slotted csma/ca for ieee
802.15.4 wireless sensor networks,” in 2006 IEEE International Workshop on Factory Communication
Systems, pp. 183–192, 2006.
[17] H.-P. Shiang and M. van der Schaar, “Queuing-based dynamic channel selection for heterogeneous
multimedia applications over cognitive radio networks,” IEEE Transactions on Multimedia, vol. 10,
no. 5, pp. 896–909, 2008.
[18] P. Lin, W.-I. Chou, and T. Lin, “Achieving airtime fairness of delay-sensitive applications in multirate
ieee 802.11 wireless lans,” IEEE Communications Magazine, vol. 49, no. 9, pp. 169–175, 2011.
[19] S.-M. Oh and J.-H. Kim, “The analysis of the optimal contention period for broadband wireless access
network,” in Third IEEE International Conference on Pervasive Computing and Communications
Workshops, pp. 215–219, 2005.
[20] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for communication networks: shadow
prices, proportional fairness and stability,” Journal of the Operational Research Society, vol. 49, no. 3,
pp. 237–252, 1998.
[21] A. J. Marler, R., “Survey of multi-objective optimization methods for engineering,” Struct Multidisc
Optim, vol. 26, p. 369–395, 2004

QR CODE