簡易檢索 / 詳目顯示

研究生: Temesgen
Temesgen Yiber Animut
論文名稱: 製備與分析噴霧熱裂解Mg2SiO4粉體
Preparation and Characterization of Spray Pyrolyzed Mg2SiO4
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Wang Cheng hao
游進陽
You Jinyang
施劭儒
Shao-Ju Shih
楊永欽
Yang Yongqin
邱德威
Qiu Dewei
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 98
中文關鍵詞: 矽酸鎂形貌噴霧熱裂解法5G電子顯微鏡
外文關鍵詞: Mg2SiO4, morphology, spray pyrolysis, 5G, electron microscopy
相關次數: 點閱:332下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,矽酸鎂(Mg2SiO4) 已被應用於耐火材料、植骨材料及微波介電材料上。眾多無線通訊技術已發展在微米波,為此,陶瓷材料在微波通訊上之應用更為重要。本研究包含利用噴霧熱裂解法生產純矽酸鎂球型粉體;利用X繞射儀確認成功合成純相矽酸鎂;利用掃描式電子顯微鏡及電子能量散佈確認矽酸鎂粉體之形貌及元素組成。本研究第一部分為使用矽酸四乙酯及硝酸鎂六水合物作為矽及鎂的前驅液,經由噴霧熱裂解法在不同煅燒溫度(850、900、950及1000℃) 合成矽酸鎂。第二部分為使用相同前驅物在不同前驅液濃度(0.10、0.25、1.00及2.00M) 之條件下,合成矽酸鎂。第三部分針對前驅液濃度及煅燒溫度進行討論並選擇最佳參數,研究顯示在煅燒溫度900℃及前驅液濃度2. 00M下為最佳參數。最終,藉由燒結及分析得到具有低力。介電常數及高品質因子之矽酸鎂陶瓷材料,對於未來應用於行動裝置通訊及基板材料及具潛


Forsterite (Mg2SiO4) materials have been employed in industrial applications such as refractory materials, bone grafting materials, and microwave dielectric materials. Many wireless communication technologies have recently been developed for millimeter-wave to kilometer-wave applications. For such applications ceramic materials are crucial. The results obtained that the spray pyrolysis approach produces pure Mg2SiO4 powders and spherical morphology. X-ray powder diffraction (XRD) confirmed that the phase composition of Mg2SiO4 was shown as a single phase. The morphology and elemental content of sintered Mg2SiO4 powders were studied using SEM-EDS analysis. In the first experiment, utilizing tetra ethyl ortho-silicate and magnesium nitrate hexahydrate as silicon and magnesium precursors, respectively, and varying calcination temperatures (850, 900, 950, and 1000 °C), we synthesized Mg2SiO4 using spray pyrolysis. In the second experiment, we employed the same materials as in the first but with different precursor concentrations (0.10, 0.25, 1.00 and 2.00M) utilizing spray pyrolysis. The final section of the thesis discusses the identification of the optimal precursor concentration and calcination temperatures. The calcination temperature of 900 °C and the precursor concentration of 2 M are the optimum conditions for the study. Next, we performed the sintering and analysis that might be used by Mg2SiO4 ceramics with low permittivity and high Q-value, which have been extensively investigated because of their potential use as substrate materials and substantial advancements in mobile communication.

Abstract i 摘要 ii Acknowledgements iii Table of Contents iv List of Figures vii List of Tables x Chapter 1. Introduction 1 1.1 Motivation and Objectives of the Study 6 Chapter 2. Literature Review 7 2.1 Electroceramics and Forsterite (Mg2SiO4) based Materials 7 2.1.1. Forsterite (Mg2SiO4) 7 2.1.2. Structure of forsterite (Mg2SiO4) 10 2.1.3. Significances and properties of forsterite (Mg2SiO4) 12 2.2 The Synthesis Technique 13 Chapter 3. Materials and Experimental Method 14 3.1 Experimental materials and instruments 14 3.2 Chemicals 14 3.3 Materials preparation 15 3.3.1. Preparations of forsterite (Mg2SiO4) powder in various calcination temperatures 15 3.3.2. Preparations of forsterite (Mg2SiO4) powder in various precursor concentrations 17 3.4 Synthesis method 19 3.4.1. Spray pyrolysis (SP) 19 3.4.1.1. Schematic equipment of spray pyrolysis 20 3.4.1.2. Atomization stage 20 3.4.1.3. Thermal stage 21 3.4.1.4. Electrostatic deposition 21 3.4.2. Formation of particles during spray pyrolysis 22 3.5 Characterization techniques 24 3.5.1. X-ray diffraction technique 24 3.5.1.1. Generation of X-rays 24 3.5.1.2. Characteristic X-ray 27 3.5.1.3. Bragg’s law 27 3.5.2. Scanning electron microscopy (FE-SEM) 28 3.5.2.1. Working principle of scanning electron microscope 29 3.5.2.2. Electron gun 31 3.5.2.3. Interactions of electrons and specimen 32 3.5.3. Transmission Electron Microscope (TEM) 33 3.5.3.1. Beam energy and resolution 34 3.5.3.2. Images contrast of TEM 35 3.5.3.3. Mass-density contrast 35 3.5.3.4. Diffraction contrast 35 3.5.3.5. Phase contrast 36 3.5.4. Brunauer- emmett teller (BET) 36 3.5.5. Fourier transforms infrared spectroscopy (FTIR) 37 3.5.6. Thermogravimetric analysis (TGA) 37 3.6 Dielectric constant and 5G mobile communication 37 3.6.1 Features and challenges of 5G networks 37 3.6.2 Performance requirements for 5G network components 38 Chapter 4. Experimental results 39 4.1 Synthesis of Forsterite (Mg2SiO4) at various calcination temperatures 39 4.1.1 XRD analysis 39 4.1.2 SEM analysis 41 4.1.3 EDS analysis 47 4.1.4 BET analysis 48 4.1.4 TEM analysis 50 4.1.5 FTIR analysis 51 4.2 Synthesis of forsterite (Mg2SiO4) in various precursor solution concentrations 51 4.2.1 XRD analysis 51 4.2.2 SEM analysis 53 4.2.3 EDS analysis 59 4.2.4 BET analysis 60 4.2.5 TEM analysis 62 4.2.6 FTIR analysis 63 Chapter 5. Discussion 64 5.1 Effect of various calcination temperatures and precursor concentrations 64 5.2 Forsterite (Mg2SiO4) powder in various calcination temperatures 65 5.2.1 Particle formation mechanism 65 5.2.2 Correlation between morphology and particle size 66 5.2.3 Correlation between calcination temperature, crystallite size and specific surface area 66 5.2.4 Correlation between calcination temperature, particle size and specific surface area 67 5.3 Forsterite (Mg2SiO4) powder in various precursor solution concentration 68 5.3.1 Correlation between morphology and particle size 68 5.3.2 Correlation between precursor solution concentration, crystallite size and specific surface area 68 5.3.3 Correlation between precursor solution concentration, particle size and specific surface area 69 5.4 Correlation between sintering temperature and relative density 70 5.5 Correlation between sintering temperature, frequency and dielectric constant 71 5.6 Correlation between quality factor, dielectric constant and sintering temperature 72 Chapter 6. Conclusion 74 6.1 Effect of various calcination temperatures and precursor concentrations 74 6.2 Mg2SiO4 powders with a variety of calcination temperatures 76 6.3 Mg2SiO4 powders with a variety of precursor solution concentrations 76 Chapter 7. Future works 77 References 78

References

[1] H. Ohsato, T. Tsunooka, T. Sugiyama, K.-i. Kakimoto, H. Ogawa, Forsterite ceramics for millimeterwave dielectrics, Journal of electroceramics, 17 (2006) 445-450. doi: https://doi.org/10.1007/s10832-006-0452-6.
[2] L. Li, Y. Wang, W. Xia, X. He, P. Zhang, Effects of Zn/Mg Ratio on the Microstructure and Microwave Dielectric Properties of (Zn1− x Mgx) 2SiO4 Ceramics, Journal of electronic materials, 41 (2012) 684-688. doi: https://doi.org/10.1007/s11664-011-1899-z.
[3] T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, H. Ohsato, Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics, Journal of the European Ceramic Society, 23 (2003) 2573-2578. doi: https://doi.org/10.1016/S0955-2219(03)00177-8.
[4] K. Surendran, N. Santha, P. Mohanan, M. Sebastian, Temperature stable low loss ceramic dielectrics in (1-x)ZnAl2O4-xTiO2 system for microwave substrate applications, The European Physical Journal B-Condensed Matter and Complex Systems, 41 (2004) 301-306. doi: https://doi.org/10.1140/epjb/e2004-00321-8.
[5] Y. Lai, X. Tang, H. Zhang, X. Liang, X. Huang, Y. Li, H. Su, Correlation between structure and microwave dielectric properties of low-temperature-fired Mg2SiO4 ceramics, Materials Research Bulletin, 99 (2018) 496-502. doi: https://doi.org/10.1016/j.materresbull.2017.11.036.
[6] L. Li, C.H. Liu, J.Y. Zhu, X.M. Chen, B2O3-modified fused silica microwave dielectric materials with ultra-low dielectric constant, Journal of the European Ceramic Society, 35 (2015) 1799-1805. doi: https://doi.org/10.1016/j.jeurceramsoc.2014.12.016.
[7] D. Zhou, L.-X. Pang, J. Guo, Z.-M. Qi, T. Shao, Q.-P. Wang, H.-D. Xie, X. Yao, C.A. Randall, Influence of Ce substitution for Bi in BiVO4 and the impact on the phase evolution and microwave dielectric properties, Inorganic chemistry, 53 (2014) 1048-1055. doi: https://doi.org/10.1021/ic402525w.
[8] D. Zhou, D. Guo, W.-B. Li, L.-X. Pang, X. Yao, D.-W. Wang, I.M. Reaney, Novel temperature stable high-ε r microwave dielectrics in the Bi2O3–TiO2–V2O5 system, Journal of Materials Chemistry C, 4 (2016) 5357-5362. doi: http://doi.org/10.1039/C6TC01431C.
[9] A. Saberi, B. Alinejad, Z. Negahdari, F. Kazemi, A. Almasi, A novel method to low temperature synthesis of nanocrystalline forsterite, Materials Research Bulletin, 42 (2007) 666-673. doi: https://doi.org/10.1016/j.materresbull.2006.07.020.
[10] K. Mostafavi, M. Ghahari, S. Baghshahi, A. Arabi, Synthesis of Mg2SiO4: Eu3+ by combustion method and investigating its luminescence properties, Journal of alloys and compounds, 555 (2013) 62-67. doi: https://doi.org/10.1016/j.jallcom.2012.12.022.
[11] K. Sanosh, A. Balakrishnan, L. Francis, T. Kim, Sol–gel synthesis of forsterite nanopowders with narrow particle size distribution, Journal of Alloys and Compounds, 495 (2010) 113-115. doi: https://doi.org/10.1016/j.jallcom.2010.01.097.
[12] A.R. Pawley, The reaction talc+ forsterite= enstatite+ H2O: New experimental results and petrological implications, American Mineralogist, 83 (1998) 51-57. doi: https://doi.org/10.2138/am-1998-0105.
[13] N. Mehta, M. Majhi, Effect of sintering at different temperature to enhance the physical and mechanical properties of forsterite refractories doped with kaolin, International Journal of Innovative Research in Science, Engineering and Technology, 5 (2016) 16261-16266. doi: http://doi.org/:10.15680/IJIRSET.2016.0509086
[14] F. Anwar, R. Boby, M. Rashid, M. Alam, Z. Shaikh, Network-based real-time integrated fire detection and alarm (FDA) system with building automation, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2017, pp. 012025.
[15] L.Y. Aranovich, R. Newton, Experimental determination of CO2-H2O activity-composition relations at 600–1000 0C and 6–14 kbar by reversed decarbonation and dehydration reactions, American Mineralogist, 84 (1999) 1319-1332. doi: https://doi.org/10.2138/am-1999-0908.
[16] I. Elfergani, A.S. Hussaini, J. Rodriguez, R.A. Abd-Alhameed, Recent Advances in Antenna Design for 5G Heterogeneous Networks, Electronics, 11 (2022) 146. doi: https://doi.org/10.3390/electronics11010146.
[17] F.C. Commission, The FCC’s 5G fast plan, FCC Initiatives. Available online: https://www. fcc. gov G, 5 (2019).
[18] T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz, M. Samimi, F. Gutierrez, Millimeter wave mobile communications for 5G cellular: It will work!, IEEE access, 1 (2013) 335-349. doi: http://doi.org/10.1109/ACCESS.2013.2260813.
[19] H. Zhao, Z. Wang, M. Zhu, X. Zhou, Y. Li, T. Zhang, H. Yuan, Application of 5G communication technology in ubiquitous power internet of things, 2020 Asia Energy and Electrical Engineering Symposium (AEEES), IEEE, 2020, pp. 618-624.
[20] Y. Kim, H.-Y. Lee, P. Hwang, R.K. Patro, J. Lee, W. Roh, K. Cheun, Feasibility of mobile cellular communications at millimeter wave frequency, IEEE Journal of selected topics in Signal Processing, 10 (2016) 589-599. doi: http://doi.org/10.1109/JSTSP.2016.2520901.
[21] I. Elfergani, A.S. Hussaini, A.M. Abdalla, J. Rodriguez, R. Abd‐Alhameed, Millimeter wave antenna design for 5G applications, Optical and Wireless Convergence for 5G Networks, (2019) 139-156. doi: https://doi.org/10.1002/9781119491590.ch7.
[22] T. Tsunooka, H. Sugiyama, K.-i. Kakimoto, H. Ohsato, H. Ogawa, Zero temperature coefficient τf and sinterability of forsterite ceramics by rutile addition, Journal of the Ceramic Society of Japan, Supplement Journal of the Ceramic Society of Japan, Supplement 112-1, PacRim5 Special Issue, The Ceramic Society of Japan, 2004, pp. S1637-S1640.
[23] T. Sugiyama, T. Tsunooka, K.-i. Kakimoto, H. Ohsato, Microwave dielectric properties of forsterite-based solid solutions, Journal of the European Ceramic Society, 26 (2006) 2097-2100. doi: https://doi.org/10.1016/j.jeurceramsoc.2005.09.102.
[24] H. Ohsato, M. Ando, T. Tsunooka, Synthesis of Forsterite with High Q and Near Zero TC f for Microwave/Millimeterwave Dielectrics, Journal of the Korean Ceramic Society, 44 (2007) 597-606. doi: https://doi.org/10.4191/KCERS.2007.44.1.597.
[25] M. Ando, K. Himura, T. Tsunooka, I. Kagomiya, H. Ohsato, Synthesis of high-quality forsterite, Japanese Journal of Applied Physics, 46 (2007) 7112. doi: http://doi.org/10.1143/JJAP.46.7112.
[26] M. Ando, H. Ohsato, I. Kagomiya, T. Tsunooka, Quality factor of forsterite for ultrahigh frequency dielectrics depending on synthesis process, Japanese Journal of Applied Physics, 47 (2008) 7729. doi: http://doi.org/10.1143/JJAP.47.7729.
[27] Y. Guo, H. Ohsato, K.-i. Kakimoto, Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency, Journal of the European Ceramic Society, 26 (2006) 1827-1830. doi: https://doi.org/10.1016/j.jeurceramsoc.2005.09.008.
[28] M. Ando, H. Ohsato, D. Igimi, Y. Higashida, A. Kan, S. Suzuki, Y. Yasufuku, I. Kagomiya, Low-temperature sintering of silica–boric acid-doped willemite and microwave dielectric properties, Japanese Journal of Applied Physics, 54 (2015) 10NE03. doi: http://doi.org/10.7567/JJAP.54.10NE03.
[29] H. Ohsato, M. Terada, K. Kawamura, Fabrication conditions of diopside for millimeterwave dielectrics, Japanese Journal of Applied Physics, 51 (2012) 09LF02. doi: http://doi.org/10.1143/JJAP.51.09LF02.
[30] H. Ohsato, I. Suzuki, I. Kagomiya, Crystal structure and microwave dielectric properties of α-(Ca1-xSrx) SiO3(x= 1 and 0.8) ring silicates for millimeter-wave applications, Materials Research Bulletin, 96 (2017) 115-120. doi: https://doi.org/10.1016/j.materresbull.2016.12.020.
[31] L. Pauling, The nature of silicon–oxygen bonds, American Mineralogist, 65 (1980) 321-323.
[32] T. Sasikala, M. Sebastian, Microwave dielectric properties of polystyrene–forsterite (Mg2SiO4) composite, Journal of Electronic Materials, 45 (2016) 729-735. doi: https://doi.org/10.1007/s11664-015-4188-4.
[33] R. Ratnawulan, A. Fauzi, Synthesis and Characterization of Forsterite (Mg2SiO4) Nanomaterials of Dunite from Sumatera, Recent Advances in Pyrolysis, IntechOpen2019.
[34] R.F. Cooper, P.C. Hall, Reactions between synthetic mica and simple oxide compounds with application to oxidation‐resistant ceramic composites, Journal of the American Ceramic Society, 76 (1993) 1265-1273. doi: https://doi.org/10.1111/j.1151-2916.1993.tb03751.x.
[35] S. Sarimai, R. Ratnawulan, R. Ramli, A. Fauzi, Effect of milling time on particle size of forsterite (Mg2SiO4) from South Solok district, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, pp. 012004.
[36] R.A. Kleiv, M. Thornhill, Dry magnetic separation of olivine sand, Physicochemical Problems of Mineral Processing, 47 (2011) 213-228.
[37] A.B. Rani, A.R. Annamalai, M. Majhi, A.H. Kumar, Synthesis and characterization of forsterite refractory by doping with kaolin, International Journal of ChemTech Research, 6 (2014) 1390-1397.
[38] H. OHSATO, Research and Development of Microwave Dielectric Ceramic for wireless communication Journal of the Ceramic Society of Japan, 113 (2005) 703-711.
[39] H. Ohsato, J. Varghese, A. Kan, J.S. Kim, I. Kagomiya, H. Ogawa, M.T. Sebastian, H. Jantunen, Volume crystallization and microwave dielectric properties of indialite/cordierite glass by TiO2 addition, Ceramics International, 47 (2021) 2735-2742. doi: https://doi.org/10.1016/j.ceramint.2020.09.126.
[40] H. Ohsato, Millimeter-wave materials, Microwave Materials and Applications, 1 (2017) 203-259. doi: https://doi.org/10.1002/9781119208549.ch5.
[41] T. Nakamura, 5G Evolution and 6G, 2020 IEEE Symposium on VLSI Technology, IEEE, 2020, pp. 1-5.
[42] A. Ghosh, A. Maeder, M. Baker, D. Chandramouli, 5G evolution: A view on 5G cellular technology beyond 3GPP release 15, IEEE access, 7 (2019) 127639-127651. doi: https://doi.org/10.1007/s10832-006-0452-6.
[43] H. Ohsato, M. Terada, I. Kagomiya, K. Kawamura, K.-i. Kakimoto, Sintering Condition of Cordierite for Microwave/Millimeterwave Dielectrics, 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics, IEEE, 2007, pp. 503-505.
[44] H. Ohsato, M. Terada, I. Kagomiya, K. Kawamura, K.-i. Kakimoto, E.S. Kim, Sintering conditions of cordierite for microwave/millimeterwave dielectrics, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 55 (2008) 1081-1085. doi: http://doi.org/10.1109/TUFFC.2008.760.
[45] M.D. Hill, D.B. Cruickshank, Ceramic materials for 5G wireless communication systems, American Ceramic Society Bulletin, 98 (2019) 20-25.
[46] M.T. Sebastian, Dielectric materials for wireless communication, Elsevier2010.
[47] H. Ohsato, Microwave dielectrics with perovskite-type structure, 2016.
[48] C. Frondel, Jacob Forster (1739–1806) and his connections with forsterite and palladium, Mineralogical Magazine, 38 (1972) 545-550. doi: https://doi.org/10.1180/minmag.1972.038.297.02.
[49] A. Cultrera, D. Serazio, A. Zurutuza, A. Centeno, O. Txoperena, D. Etayo, A. Cordon, A. Redo-Sanchez, I. Arnedo, M. Ortolano, Mapping the conductivity of graphene with Electrical Resistance Tomography, Scientific reports, 9 (2019) 1-9. doi: https://doi.org/10.1038/s41598-019-46713-8.
[50] Z. Weng, R. Guan, Z. Xiong, Effects of the ZBS addition on the sintering behavior and microwave dielectric properties of 0.95 Zn2SiO4-0.05 CaTiO3 ceramics, Journal of Alloys and Compounds, 695 (2017) 3517-3521. doi: https://doi.org/10.1016/j.jallcom.2016.11.420.
[51] J. Brodholt, Ab initio calculations on point defects in forsterite (Mg2SiO4) and implications for diffusion and creep, American Mineralogist, 82 (1997) 1049-1053. doi: https://doi.org/10.2138/am-1997-11-1201.
[52] Y. Orikasa, T. Masese, Y. Koyama, T. Mori, M. Hattori, K. Yamamoto, T. Okado, Z.-D. Huang, T. Minato, C. Tassel, High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements, Scientific reports, 4 (2014) 1-6. doi: http://doi.org/10.1038/srep05622.
[53] S. El Asri, H. Ahamdane, L. Hajji, M. El Hadri, M.A.E.I. Raghni, M. Mansori, Effect of MCl (M= Na, K) addition on microstructure and electrical conductivity of forsterite, The European Physical Journal Applied Physics, 92 (2020) 10901. doi: https://doi.org/10.1051/epjap/2020200161.
[54] D.C. Presnall, M.J. Walter, Melting of forsterite, Mg2SiO4, from 9.7 to 16.5 GPa, Journal of Geophysical Research: Solid Earth, 98 (1993) 19777-19783. doi: https://doi.org/10.1029/93JB01007.
[55] R. Whitby, K. Brigatti, I. Kinloch, D. Randall, T. Maekawa, Novel Mg2SiO4 structures, Chemical Communications, (2004) 2396-2397. doi: http://doi.org/10.1039/B409456E.
[56] L. Giordano, M. Viviani, C. Bottino, M. Buscaglia, V. Buscaglia, P. Nanni, Microstructure and thermal expansion of Al2TiO5–MgTi2O5 solid solutions obtained by reaction sintering, Journal of the European Ceramic Society, 22 (2002) 1811-1822. doi: https://doi.org/10.1016/S0955-2219(01)00503-9.
[57] C.M. Letargo, W.M. Lamb, J.-S. Park, Comparison of calcite+ dolomite thermometry and carbonate+ silicate equilibria: Constraints on the conditions of metamorphism of the Llano uplift, central Texas, USA, American Mineralogist, 80 (1995) 131-143. doi: https://doi.org/10.2138/am-1995-1-213.
[58] Y. Shieh, R. Rawlings, D. West, Constitution of laser melted Al2O3–MgO–SiO2 ceramics, Materials science and technology, 11 (1995) 863-869. doi: https://doi.org/10.1179/mst.1995.11.9.863.
[59] Y. SUZUKI, Mechanical strength and electrical conductivity of reactively-sintered pseudobrookite-type Al2TiO5–MgTi2O5 solid solutions, Journal of the Ceramic Society of Japan, 124 (2016) 1-6. doi: https://doi.org/10.2109/jcersj2.15098.
[60] W. Meng, C. Ma, T. Ge, X. Zhong, Effect of zircon addition on the physical properties and coatability adherence of MgO–2CaO· SiO2–3CaO· SiO2 refractory materials, Ceramics International, 42 (2016) 9032-9037. doi: https://doi.org/10.1016/j.ceramint.2016.02.140.
[61] S. Ni, L. Chou, J. Chang, Preparation and characterization of forsterite (Mg2SiO4) bioceramics, Ceramics International, 33 (2007) 83-88. doi: https://doi.org/10.1016/j.ceramint.2005.07.021.
[62] T. Ban, Y. Ohya, Y. Takahashi, Low‐temperature crystallization of forsterite and orthoenstatite, Journal of the American Ceramic Society, 82 (1999) 22-26. doi: https://doi.org/10.1111/j.1151-2916.1999.tb01718.x.
[63] I. Low, Z. Oo, B. O’Connor, Effect of atmospheres on the thermal stability of aluminium titanate, Physica B: Condensed Matter, 385 (2006) 502-504. doi: https://doi.org/10.1016/j.physb.2006.05.256.
[64] E. Mustafa, N. Khalil, A. Gamal, Sintering and microstructure of spinel–forsterite bodies, Ceramics international, 28 (2002) 663-667. doi: https://doi.org/10.1016/S0272-8842(02)00025-1.
[65] S. Ananthakumar, K. Warrier, Extrusion characteristics of alumina–aluminium titanate composite using boehmite as a reactive binder, Journal of the European Ceramic Society, 21 (2001) 71-78.
[66] I. Kucuk, T. Boyraz, H. Gökçe, M.L. Öveçoğlu, Thermomechanical properties of aluminium titanate (Al2TiO5)-reinforced forsterite (Mg2SiO4) ceramic composites, Ceramics International, 44 (2018) 8277-8282. doi: https://doi.org/10.1016/j.ceramint.2018.02.010.
[67] N. Petric, V. Martinac, E. Tkalcec, H. Ivankovic, B. Petric, Thermodynamic analysis of results obtained by examination of the forsterite and spinel formation reactions in the process of magnesium oxide sintering, Industrial & engineering chemistry research, 28 (1989) 298-302.
[68] H. Kursun, U. Ulusoy, Influence of shape characteristics of talc mineral on the column flotation behavior, International Journal of Mineral Processing, 78 (2006) 262-268. doi: https://doi.org/10.1016/j.minpro.2005.11.003.
[69] S. Mukherjee, S. Paria, Preparation and stability of nanofluids-a review, IOSR Journal of Mechanical and civil engineering, 9 (2013) 63-69.
[70] A. Saberi, Z. Negahdari, B. Alinejad, F. Golestani-Fard, Synthesis and characterization of nanocrystalline forsterite through citrate–nitrate route, Ceramics International, 35 (2009) 1705-1708. doi: https://doi.org/10.1016/j.ceramint.2008.09.007.
[71] M. Tsai, Preparation and crystallization of forsterite fibrous gels, Journal of the European Ceramic Society, 23 (2003) 1283-1291. doi: https://doi.org/10.1016/S0955-2219(02)00305-9.
[72] H.A. Al-Abadleh, V. Grassian, Phase transitions in magnesium nitrate thin films: a transmission FT-IR study of the deliquescence and efflorescence of nitric acid reacted magnesium oxide interfaces, The Journal of Physical Chemistry B, 107 (2003) 10829-10839. doi: https://doi.org/10.1021/jp0275692.
[73] G. De, B. Karmakar, D. Ganguli, Hydrolysis–condensation reactions of TEOS in the presence of acetic acid leading to the generation of glass-like silica microspheres in solution at room temperature, Journal of Materials Chemistry, 10 (2000) 2289-2293. doi: http://doi.org/10.1039/B003221M.
[74] S.-J. Shih, P.R. Herrero, G. Li, C.-Y. Chen, S. Lozano-Perez, Characterization of mesoporosity in ceria particles using electron microscopy, Microscopy and Microanalysis, 17 (2011) 54-60. doi: https://doi.org/10.1017/S1431927610093980.
[75] G.L. Messing, S.C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, Journal of the American Ceramic Society, 76 (1993) 2707-2726. doi: https://doi.org/10.1111/j.1151-2916.1993.tb04007.x.
[76] D.S. Jung, Y.N. Ko, Y.C. Kang, S.B. Park, Recent progress in electrode materials produced by spray pyrolysis for next-generation lithium ion batteries, Advanced Powder Technology, 25 (2014) 18-31. doi: https://doi.org/10.1016/j.apt.2014.01.012.
[77] M. Eslamian, N. Ashgriz, Effect of precursor, ambient pressure, and temperature on the morphology, crystallinity, and decomposition of powders prepared by spray pyrolysis and drying, Powder technology, 167 (2006) 149-159. doi: https://doi.org/10.1016/j.powtec.2006.06.016.
[78] S.-J. Shih, Y.-Y. Wu, C.-Y. Chen, C.-Y. Yu, Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis, Journal of Nanoparticle Research, 14 (2012) 1-9. doi: https://doi.org/10.1007/s11051-012-0879-4.
[79] J. Bogovic, S. Stopic, B. Friedrich, J. Schroeder, Ultrasonic spray pyrolysis, Proceedings of the EMC, 2011.
[80] H.F. Kraemer, H. Johnstone, Collection of aerosol particles in presence of electrostatic fields, Industrial & Engineering Chemistry, 47 (1955) 2426-2434.
[81] B.-J. Hong, C.-W. Hsiao, F.F. Bakare, J.-T. Sun, S.-J. Shih, Effect of acetic acid concentration on pore structure for mesoporous bioactive glass during spray pyrolysis, Materials, 11 (2018) 963. doi: https://doi.org/10.3390/ma11060963.
[82] S.-J. Shih, Y.-C. Lin, S.-H. Lin, P. Veteška, D. Galusek, W.-H. Tuan, Preparation and characterization of Eu-doped gehlenite glassy particles using spray pyrolysis, Ceramics International, 42 (2016) 11324-11329. doi: https://doi.org/10.1016/j.ceramint.2016.04.053.
[83] D. Charlesworth, W. Marshall Jr, Evaporation from drops containing dissolved solids, AIChE Journal, 6 (1960) 9-23. doi: https://doi.org/10.1002/aic.690060104.
[84] T.J. Gardner, D. Sproson, G. Messing, Precursor chemistry effects on development of particulate morphology during evaporative decomposition of solutions, MRS Online Proceedings Library (OPL), 32 (1984). doi: https://doi.org/10.1557/PROC-32-227.
[85] B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing1956.
[86] J. Goldstein, Practical scanning electron microscopy: electron and ion microprobe analysis, Springer Science & Business Media2012.
[87] Y. Leng, Materials characterization: introduction to microscopic and spectroscopic methods, John Wiley & Sons2009.
[88] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, Journal of the American chemical society, 60 (1938) 309-319.
[89] P. King, P. McMillan, G. Moore, M. Ramsey, G. Swayze, Infrared spectroscopy of silicate glasses with application to natural systems, Infrared Spectroscopy in Geochemistry, Exploration Geochemistry and Remote Sensing, 33 (2004) 93-133.
[90] L. Mathur, S.S. Hossain, M.R. Majhi, P.K. Roy, Synthesis of nano-crystalline forsterite (Mg2SiO4) powder from biomass rice husk silica by solid-state route, Boletín de la Sociedad Española de Cerámica y Vidrio, 57 (2018) 112-118. doi: https://doi.org/10.1016/j.bsecv.2017.10.004.
[91] S. Georges, F. Goutenoire, P. Lacorre, M.C. Steil, Sintering and electrical conductivity in fast oxide ion conductors La2−xRxMo2− yWyO9 (R: Nd, Gd, Y), Journal of the European Ceramic Society, 25 (2005) 3619-3627. doi: https://doi.org/10.1016/j.jeurceramsoc.2004.09.029.
[92] X. Chen, B. Lei, Y. Wang, N. Zhao, Morphological control and in vitro bioactivity of nanoscale bioactive glasses, Journal of Non-Crystalline Solids, 355 (2009) 791-796. doi: https://doi.org/10.1016/j.jnoncrysol.2009.02.005.
[93] G.R. Schoofs, J.B. Benziger, Decomposition of acetic acid monomer, acetic acid dimer, and acetic anhydride on Ni (111), Surface science, 143 (1984) 359-368. doi: https://doi.org/10.1016/0039-6028(84)90547-8.
[94] L.T. Arenas, C.W. Simm, Y. Gushikem, S.L. Dias, C.C. Moro, T.M. Costa, E.V. Benvenutti, Synthesis of silica xerogels with high surface area using acetic acid as catalyst, Journal of the Brazilian Chemical Society, 18 (2007) 886-890. doi: https://doi.org/10.1590/S0103-50532007000500003
[95] S. Shih, J. Huang, Designing the morphology of ceria particles by precursor complexes, Ceramics International, 39 (2013) 2275-2281. doi: https://doi.org/10.1016/j.ceramint.2012.08.074.
[96] S.-J. Shih, Y.-Y. Wu, K.B. Borisenko, Control of morphology and dopant distribution in yttrium-doped ceria nanoparticles, Journal of Nanoparticle Research, 13 (2011) 7021-7028. doi: https://doi.org/10.1007/s11051-011-0614-6.
[97] S.-J. Shih, Y.-J. Chou, C.-Y. Chen, C.-K. Lin, One-step synthesis and characterization of nanosized bioactive glass, Journal of Medical and Biological Engineering, 34 (2014) 18-23.
[98] C.A. Angell, J.C. Tucker, Heat capacities and fusion entropies of the tetrahydrates of calcium nitrate, cadmium nitrate, and magnesium acetate. Concordance of calorimetric and relaxational ideal glass transition temperatures, The journal of physical chemistry, 78 (1974) 278-281.
[99] P. Patnaik, Handbook of inorganic chemicals, McGraw-Hill New York2003.
[100] S.-J. Shih, K.B. Borisenko, L. Liu Jr, C.-Y. Chen, Multiporous ceria nanoparticles prepared by spray pyrolysis, Journal of Nanoparticle Research, 12 (2010) 1553-1559. doi: https://doi.org/10.1007/s11051-010-9863-z.

QR CODE