簡易檢索 / 詳目顯示

研究生: 林允智
Yun-Chih Lin
論文名稱: 奈米材料之尺寸及侷限空間效應對於吸附醇類分子之行為研究
Investigations of Sized and Confined Effects of Nano-material on Molecular Behaviors of Adsorbed Alcoholic Molecules
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
Tse-Chuan Chou
劉尚斌
Shang-Bin Liu
林智汶
Chi-Wen Lin
杜景順
Jing-Shan Do
蔡大翔
Dah-Shyang Tsai
陳良益
Liang-Yih Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 161
中文關鍵詞: 甲醇氧化反應奈米尺寸效應密度泛函理論電化學紅外光譜鉑金觸媒一氧化碳氧化反應質傳控制動力控制固態核磁共振石墨化侷限空間效應蔗糖分子運動二維NOESY堆積結構正丁醇SBA-15
外文關鍵詞: methanol oxidation reaction, nano-sized effects, DFT, electrochemistry, FTIR, Pt catalyst, CO oxidation reaction, diffusion-controlled, kinetic-controlled, Solid State NMR, graphitization, confined effects, Sucrose, molecular motion, 2D NOESY, stacking structure, 1-butanol, SBA-15
相關次數: 點閱:382下載:50
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

對於能源材料之發展,醇類分子吸附於新穎奈米材料之複雜行為實有進一步瞭解之必要。在本論文中,將深入地探討奈米材料之尺寸及侷限空間效應對於所吸附醇類分子行為之影響。
首先對於奈米尺寸效應,吾人將有系統地以電化學實驗、臨場電化學紅外光譜術(In situ EC-FTIRS)以及密度泛函理論(DFT)計算,研究鉑金(Pt)觸媒奈米尺寸效應對於其表面之一氧化碳覆蓋行為、電催化甲醇氧化反應之反應動力及電化學行為之影響。其結果顯示,在電催化甲醇氧化反應,當掃描電位至 + 1.0 V (RHE),在鉑金塊材上,大部分之一氧化碳會被氧化;但在奈米尺寸鉑金觸媒表面上,仍吸附相當多之一氧化碳。從計算結果得知,由於在觸媒表面邊角活性位置(edge site)之一氧化碳具有較高之氧化反應(COads 與OHads 之反應)能障;而邊角活性位置在奈米尺寸鉑金觸媒表面上又佔有相當大之比例,再加上在邊角活性位置上之甲醇質傳阻力相對於平面活性位置低,因而造成電化學反應行為在不同觸媒尺寸上明顯之差異,在塊材及在奈米尺寸鉑金觸媒之動力學行為分別具有質傳控制及動力控制之行為。
在本研究中,吾人利用固態核磁共振譜術,深入地探討侷限空間效應對於蔗糖石墨化之影響。首先從交叉極化之碳譜(13C-CP/NMR)結果得知,侷限空間效應促使含氧之碳(oxygenated carbon)結構容易形成,由此可推斷侷限空間效應將促進蔗糖分子於石墨化過程中交聯(cross-linking)結構之形成。另外,藉由固態核磁共振之氫譜、碳譜、自旋-晶格遲緩(Spin-Lattice Relaxation)及自旋-自旋遲緩(Spin-Spin Relaxation)實驗可得知,在侷限空間中正丁醇(1-butanol)分子之運動性受到極大限制,因此2D NOESY技術將適合於擷取其分子間(inter-molecule)之質子相對平均距離,其平均距離之結果顯示,於SBA-15之侷限空間內,正丁醇分子間之疏水端與疏水端距離較分子間之親水端與親水端距離更短;而分子間之疏水端與親水端距離也較分子內之疏水端與親水端距離更短,由此可推測,正丁醇分子於SBA-15之侷限空間內並於一時間平均狀態(time-average state)下,不但呈現一雙層(bilayered structure)之排列結構,亦顯示其中有相當比例之正丁醇分子呈現傾斜(tilted)之雙層結構,由上述結果可得知醇類分子在SBA-15侷限空間中具有規則化堆積及排列之現象。此外,由拉曼光譜(Raman Spectrum)之結果顯示,受SBA-15侷限空間效應影響之蔗糖,其熱裂解後之石墨化程度較高;此石墨化程度受侷限空間效應影響而增加之現象,可由上述結果推論得知,其主要導因於醇類分子之規則化堆積及排列,而並非是裂解中交聯結構之減少所致。
本論文中奈米尺寸及侷限空間效應之研究結果及方法,不僅可提供新的方向去瞭解吸附於奈米材料表面及孔洞材料內之醇類分子行為,更可開啟其他的應用研究方向,例如在材料合成方法、能源材料以及生物材料之應用上。


Understanding the complex behaviors of adsorbed alcoholic molecules on or in nano-materials is essential for improving the performance of energy conversion/storage materials. Sized and confined effects of nano-materials on behaviors of alcoholic molecules were thoroughly investigated and discussed in this thesis.
The nano-sized effects of Pt catalysts in terms of the surface coverage, electrochemical response and reaction kinetics during the electro-catalytic methanol oxidation reaction (MOR) have been extensively investigated by systematic electrochemical measurements, in situ electrochemical FTIR spectroscopy (EC-FTIRS) technique and Density Functional Theory (DFT) computational approaches. In contrast to bulk Pt, a relatively higher COads coverage on the nano-sized Pt catalyst was observed at the end of forward sweep (+1.0 V/RHE) from the in situ EC-FTIR investigations. The IR observations resulted from the fact that the electro-catalytic MOR appears to be diffusion-controlled process on the bulk Pt catalyst, whereas it was kinetic-controlled process on the nano-sized Pt catalyst due to both the higher kinetic barrier of COads + OHads reaction and lower diffusion resistance. By considering the in situ EC-FTIR and DFT computational results, the surface coverage models of the electro-catalytic MOR on the bulk and the nano-sized Pt catalysts were proposed.
Here, the graphitization of pyrolyzed confined sucrose in SBA-15 was investigated by solid state NMR. It showed that the confined effects facilitated the formation of oxygenated carbon, indicating the cross-linking degree of pyrolyzed sucrose increased due to confined effects. Meanwhile, a range of NMR measurements comprising of 1H spin-lattice (T1), spin-spin (T2) relaxation, 13C cross-polarization (CP), and 1H-1H two dimensional nuclear Overhauser enhancement spectroscopy (1H-1H 2D NOESY) with the magic angle spinning (MAS) technique were employed to investigate the dynamics and to observe the stacking structure of confined 1-butanol in SBA-15. The results of 1H, 13C-CP/NMR, T1 and T2 measurements confirmed that the molecular motion of confined 1-butanol molecules is extremely restricted. It also indicated that 1H-1H 2D NOESY technique is an appropriate tool to obtain the relatively average distance between protons of 1-butanol molecules when the molecules are confined in SBA-15. The result of 1H-1H 2D NOESY measurement demonstrated that the distance between inter-molecular hydrophobic sides of confined 1-butanol molecules was shorter than that between hydrophilic sides. Moreover, the distance between inter-molecular hydrophobic and hydrophilic sides of confined 1-butanol molecules is shorter than that between intra-molecular hydrophobic and hydrophilic sides. It not only indicates that the confined 1-butanol molecules in SBA-15 are stacked as a bilayered structure, but also indicates a considerable fraction of the 1-butanol molecules are stacked as a tilted bilayered structure. That is first time to observe that the confined alcoholic molecules stacked in an ordered structure in the host of SBA-15. According to the analysis of Raman spectrum, the graphitization degree of the pyrolyzed sucrose increases when the sucrose is confined in mesoporous SBA-15. The increment of the graphitization degree of the confined pyrolyzed sucrose therefore mainly resulted from the ordered stacking structure of confined sucrose molecules rather than from the decrease of cross-linking degree.
The results and methods of the nano-sized and confined effects not only provide new aspects to the understanding of the phenomena of adsorbed alcoholic molecules on the novel nano-materials, but also open new possibilities of applied research in materials synthetic methodologies, steam reforming and biological applications.

Table of Contents 中文摘要 I Abstract III Acknowledgements VI Table of Contents VII List of Figures XI Chapter 1. General Introduction 1 1-1 Direct Methanol and Polymer Electrolyte Membrane Fuel Cells 1 1-1-1 Architecture, Electrochemical Behaviors and Cost of DMFC and PEMFC 3 1-1-1-1 Proton Conducting Membrane of DMFC and PEMFC 7 1-1-1-2 Anode and Cathode Electrodes of DMFC and PEMFC 10 1-1-1-2-1 Anode Catalysts for DMFC 11 1-1-1-2-2 Cathode Catalysts for PEMFC and DMFC 12 1-1-1-3 Durability of Cell Performance 13 1-1-1-4 Cost Analysis of PEMFC and DMFC 16 1-2 Alcoholic molecules applied in DMFC and PEMFC 17 1-2-1 Methanol Oxidation Reaction 18 1-2-2 Carbon Supports 20 1-2-2-1 Activated Carbon 21 1-2-2-2 Graphite 23 1-2-2-3 Carbon Black 24 1-2-2-4 Ordered Mesoporous Carbon 24 1-3 Motivation 28 Chapter 2. Nanosized Effects of Pt Catalysts on Electro-Catalytic Methanol Oxidation Reaction Activity 29 2-1 Background and Objective 29 2-2 Experimental Design and Conditions 31 2-2-1 Experimental Design 31 2-2-2 Experimental conditions 33 2-2-2-1 In-situ EC-FTIRs Measurements 33 2-2-2-2 Electrochemical Measurements 35 2-2-2-3 Theoretical Computation Methodology 35 2-3 Characterizations of Materials 37 2-3-1 Average Crystalline Size of Pt catalysts 37 2-3-2 Electrochemical Active Surface Area 38 2-4 Results and Discussion 40 2-4-1 Nano-sized effects on the surface coverage upon electro-catalytic MOR 40 2-4-1-1 Experimental Observations 40 2-4-1-2 Theoretical Discussion 43 2-4-1-2-1 COads on Pt (111) slab 43 2-4-1-2-2 Reaction Pathway of COads+OHadsCOOHads on Pt (111) slab 44 2-4-1-2-3 Reaction of COads+OHadsCOOHads on Pt cluster 44 2-4-2 Surface coverage models 48 2-4-3 Nano-sized effects on the electrochemical response 56 2-5 Summary 66 Chapter 3. Confined Effects of SBA-15 on Graphitization of Sucrose Carbon Source 67 3-1 Background and Objective 67 3-2 Experimental Design and Condition 72 3-2-1 Experimental Design 72 3-2-2 Experimental Conditions 74 3-2-2-1 Preparation of SBA-15 74 3-2-2-2 Preparation of Carbon Materials from Sucrose 75 3-2-2-3 Preparation of NMR Samples for Studies of Stacking Issues 76 3-2-2-4 Solid State NMR Measurements 76 3-3 Characterizations of Materials 77 3-4 Results and Discussion 81 3-4-1 Cross-linking Degree of Pyrolyzed Carbon Materials 81 3-4-2 Dynamics of Confined 1-Butanol 90 3-4-3 Stacking Structure of Confined 1-butanol Molecules in SBA-15 99 3-5 Summary 111 Conclusions 113 Appendix. 115 Introduction to Nuclear Magnetic Resonance Techniques 115 A-1 Concepts of NMR Signal Detection 115 A-2 Internal Spin Interactions 119 A-2-1 Chemical Shift Interaction 119 A-2-2 Dipolar Coupling Interaction 120 A-2-3 Quadrupolar Coupling Interaction 120 A-3 NMR Relaxation 121 A-3-1 Spin-Lattice Relaxation (T1) 122 A-3-2 Spin-Spin Relaxation (T2) 123 A-4 NMR Techniques 124 A-4-1 Magic Angle Spinning (MAS) 125 A-4-2 Cross-Polarization (CP) 127 A-4-3 Nuclear Overhauser Effect (NOE) 128 A-4-4 Two Dimensional NMR (2D NMR) Spectroscopy 132 References 135 Publication List 147 List of Tables Table 1 1. The most general and developing fuel cells 2 Table 1 2. Structures and properties of proton conducting membranes 9 Table 1 3. Peroxide/radical stability of proton conducting electrolytes 14 Table 1 4. Durability of FCs with various proton conducting electrolytes 14 Table 2 1. List of employed chemicals 32 Table 2 2. The onset potential (Eo), peak potential (Epeak) and CO adsorption area of CO-stripping data for JM40 and JM70 Pt/C catalysts 40 Table 2 3. Bond lengths, distance, calculated frequency for COads on Pt(111) slab, and on Pt55 cluster 47 Table 3 1. List of employed chemicals 74 Table 3 2. Ratios of carbon environments for pyrolyzed Su2, SuSP2 and SuS2 at 160 as well as 400 oC 89 Table 3 3. T1, T2 and TR of the SBA-BuOH and Bulk-BuOH 98 Table 3 4. Inter-nuclear average distances for various confined 1-butanol molecules and a single 1-butanol molecule. 107 List of Figures Figure 1 1. Schematic Principle of DMFC and PEMFC 4 Figure 1 2. The performance losses of the typical DMFC and PEMFC operated with air at 80ºC 6 Figure 1 3. Schematic molecular structure of perfluorosulfonated membranes 8 Figure 1 4. Classifications of proton conducting membranes 9 Figure 1 5. Architecture of catalyst electrode 10 Figure 1 6. X-ray powder diffraction (XRD) patterns of the pristine Pt/Vulcan (2.3 nm), cycled anode and cycled cathode (10.5 nm) samples 15 Figure 1 7. TEM images of fresh MEA and cycled MEA 16 Figure 1 8. Cost breakdown for PEMFC stack with a model of 80 kW in 2005 17 Figure 1 9. Pore volume distribution and BET surface area of wood, peat and coconut shell based activated carbons and of wood based activated carbons with varying degrees of activation, respectively 22 Figure 1 10. Schematic representation showing the concept of replication synthesis and synthesized micro-, meso- and macroporous carbons 26 Figure 1 11. TEM images of ordered nano-pipe-type carbon, mesocellular carbon foam, ordered mesoporous carbon, hollow core/mesoporous shell (HCMS) carbon capsules and graphitic macroporous carbon 27 Figure 2 1. Procedures for investigating nano-sized effects of Pt catalysts on electro-catalytic MOR 32 Figure 2 2. Schematic of tilt setting used in the in-situ EC-FTIR cell 34 Figure 2 3. Computational surface model of the slab approach and the cluster approach 37 Figure 2 4. XRD spectra of JM40 and JM70 Pt/C catalysts 38 Figure 2 5. CO-stripping results of JM40 and JM70 Pt/C catalysts 39 Figure 2 6. In situ EC-FTIR results for JM-70 Pt/C (~3.2 nm) catalyst 42 Figure 2 7. Potential-dependent CO coverage for Pt bulk catalyst in 1.0 M methanol / 0.1 M HClO4 42 Figure 2 8. Optimized geometries of the initial states (co-adsorbed CO + OH) for COads + OHads reaction, the transition states and the final states on Pt(111) slab and edge site of a Pt55 cluster (111) surface 46 Figure 2 9. Energy profiles of COads + OHads reaction on Pt (111) slab and on Pt55 cluster 48 Figure 2 10. If v.s v1/2 plot for various Pt catalysts in a 1.0 M methanol / 0.5 M H2SO4 solution 59 Figure 2 11. Possible schematics of methanol diffusion routes on bulk and nano-sized Pt catalysts 59 Figure 2 12. Cyclic voltammograms of MOR on polycrystalline bulk Pt and nano-sized Pt (~ 2.0 nm) catalysts in a series of methanol concentrations 61 Figure 2 13. Cyclic voltammograms of MOR on JM 40 Pt/C (~2.0 nm) catalysts with various end potentials of forward sweep and a series of methanol concentration solution 63 Figure 2 14. Cyclic voltammograms of different sized Pt/C catalysts in a 1.0 M methanol / 0.5 M H2SO4 solution with a scan rate of 30 mV/s 64 Figure 2 15. Schematics of surface coverage models with corresponding CV measurements on polycrystalline bulk Pt catalyst and nano-sized Pt catalyst (cubooctahedral structure). 65 Figure 3 1. Investigation procedure of confined effects on graphitization of sucrose 73 Figure 3 2. SEM image of synthesized SBA-15 at various magnifications 78 Figure 3 3. TEM images of synthesized SBA-15 at various magnifications and directions 79 Figure 3 4. SAXS spectrum of synthesized SBA-15 79 Figure 3 5. Nitrogen adsorption-desorption isothermal and distribution of pore diameter diagrams for synthesized SBA-15 80 Figure 3 6. Raman spectra and integrated intensity ratio ID/IG of Su2, SuSP2 and SuS2 with pyrolyzed temperature of 900 oC as well as 1200 oC 82 Figure 3 7. 13C-CP/NMR spectra of Su2, SuSP2 and SuS2 pyrolyzed at 160 oC 87 Figure 3 8. 13C-CP/NMR spectra of Su2, SuSP2 and SuS2 pyrolyzed at 400 oC 89 Figure 3 9. Static wide-line 2H NMR spectra for bulk BuOH-d9 and SBA-BuOH-d9 92 Figure 3 10. 1H/MAS NMR spectra for SBA-BuOH and SBA-BuOD with deconvoluted analysis 94 Figure 3 11. Schematic adsorbed 1-butanol molecules on the pore surface of SBA-15 95 Figure 3 12. 13C-CP/MAS NMR spectra of the SBA-BuOH with contact time of 1.0 and 5.0 ms 96 Figure 3 13. 1H-1H 2D MAS NOESY contour plots of SBA-BuOD at 22 oC, SBA-BuOH at 22 oC and SBA-BuOH at -40 oC with mixing time of 200 ms. 102 Figure 3 14. Integrated intensities of cross-peaks with various mixing time for SBA-BuOD at 22 oC, SBA-BuOH at 22 oC and SBA-BuOH at -40 oC 104 Figure 3 15. Schematics of possible stacking structures of confined 1-butanol in SBA-15. 110 Figure A-1. Schematic spin precession motion 116 Figure A-2. Schematic population distribution of the spins under a magnetic field 116 Figure A-3. Schematic process for obtaining NMR signal 118 Figure A-4. Schematic chemical shift interaction 119 Figure A-5. Schematic dipolar coupling interaction 120 Figure A-6. Schematic quadrupolar coupling interaction 121 Figure A-7. Schematic time-dependent Mz 122 Figure A-8. Schematic time-dependent My and Mx 123 Figure A-9. The correlation between molecular motion degree and T1 as well as T2 relaxation time constant 124 Figure A-10. Schematic magic angle spinning technique 125 Figure A-11. Effects of MAS on solid state NMR spectrum of zinc acetate 126 Figure A-12. Schematic spin exchange process 127 Figure A-13. Pulse sequence of CP and schematic Hartmann-Hahn condition 128 Figure A-14. Schematic process of nuclear cross-relaxation and spin diffusion 130 Figure A-15. Pulse sequence of 2D NOESY 130 Figure A-16. Diagonal-peak and cross-peak intensity of 2D NOESY with various mixing time (τm) for fast molecular reorientation motion and slow molecular reorientation motion 131 Figure A-17. Schematic process of collection for 2D NMR spectrum 133 Figure A-18. Correlations of 1D and 2D NMR spectra 134

1. Carrette, L.; Friedrich, K. A.; Stimming, U., Fuel Cells 2001, 1, (1), 5.
2. Ralph, T. R.; Hogarth, M. P., Platinum Met. Rev. 2002, 46, (1), 3.
3. Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; Zelenay, P.; More, K.; Stroh, K.; Zawodzinski, T.; Boncella, J.; McGrath, J. E.; Inaba, M.; Miyatake, K.; Hori, M.; Ota, K.; Ogumi, Z.; Miyata, S.; Nishikata, A.; Siroma, Z.; Uchimoto, Y.; Yasuda, K.; Kimijima, K. I.; Iwashita, N., Chem. Rev. 2007, 107, (10), 3904.
4. Iwasita, T., Handbook of Fuel Cells – Fundamentals, Technology and Applications. John Wiley & Sons, Ltd.: 2003; Vol. 2, p 22.
5. Hogarth, M. P.; Ralph, T. R., Platinum Met. Rev. 2002, 46, (4), 146.
6. Mauritz, K. A.; Moore, R. B., Chem. Rev. 2004, 104, (10), 4535.
7. Smitha, B.; Sridhar, S.; Khan, A. A., Journal of Membrane Science 2005, 259, (1-2), 10.
8. Gurau, B.; Viswanathan, R.; Liu, R.; Lafrenz, T. J.; Ley, K. L.; Smotkin, E. S.; Reddington, E.; Sapienza, A.; Chan, B. C.; Mallouk, T. E.; Sarangapani, S., J. Phys. Chem. B 1998, 102, (49), 9997.
9. Watanabe, M.; Motoo, S., J. Electroanal. Chem. 1975, 60, (3), 267.
10. Frelink, T.; Visscher, W.; van Veen, J. A. R., Surf. Sci. 1995, 335, (C), 353.
11. Hwang, B. J.; Sarma, L. S.; Wang, G. R.; Chen, C. H.; Liu, D. G.; Sheu, H. S.; Lee, J. F., Chem. Eur. J. 2007, 13, (21), 6255.
12. Hwang, B. J.; Sarma, L. S.; Chen, J. M.; Chen, C. H.; Shin, S. C.; Wang, Q. R.; Liu, D. G.; Lee, J. F.; Tang, M. T., J. Am. Chem. Soc. 2005, 127, (31), 11140.
13. Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R., Angew. Chem. Int. Ed. 2005, 44, (14), 2132.
14. Hwang, B. J.; Kumar, S. M. S.; Chen, C. H.; Monalisa; Cheng, M. Y.; Liu, D. G.; Lee, J. F., Journal of Physical Chemistry C 2007, 111, (42), 15267.
15. Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M., J. Electrochem. Soc. 1999, 146, (10), 3750.
16. Borup, R. L.; Davey, J. R.; Garzon, F. H.; Wood, D. L.; Inbody, M. A., J. Power Sources 2006, 163, (1 SPEC. ISS.), 76.
17. Knights, S. D.; Colbow, K. M.; St-Pierre, J.; Wilkinson, D. P., J. Power Sources 2004, 127, (1-2), 127.
18. Sarma, L. S.; Chen, C. H.; Wang, G. R.; Hsueh, K. L.; Huang, C. P.; Sheu, H. S.; Liu, D. G.; Lee, J. F.; Hwang, B. J., J. Power Sources 2007, 167, (2), 358.
19. Zelenay, P. In Performance durability of direct mettanol fuel cells, ECS Transactions, Los Angeles, CA, 2005; Los Angeles, CA, 2005; pp 483.
20. Piela, P.; Eickes, C.; Brosha, E.; Garzon, F.; Zelenay, P., J. Electrochem. Soc. 2004, 151, (12).
21. Liu, J.; Zhou, Z.; Zhao, X.; Xin, Q.; Sun, G.; Yi, B., Phys. Chem. Chem. Phys. 2004, 6, (1), 134.
22. Carlson, E. J.; Kopf, P.; Sinha, J.; Sriramulu, S.; Yang, Y., Cost Analysis of PEM Fuel Cell Systems for Transportation. National Renewable Energy Laboratory: 2005.
23. Selvam, P.; Bhatia, S. K.; Sonwane, C. G., Ind. Eng. Chem. Res. 2001, 40, (15), 3237.
24. Kleitz, F.; Choi, S. H.; Ryoo, R., Chem. Commun. 2003, 9, (17), 2136.
25. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Science 1998, 279, (5350), 548.
26. Kim, T. W.; Kleitz, F.; Paul, B.; Ryoo, R., J. Am. Chem. Soc. 2005, 127, (20), 7601.
27. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., J. Am. Chem. Soc. 1992, 114, (27), 10834.
28. Lee, J.; Kim, J.; Hyeon, T., Adv. Mater. 2006, 18, (16), 2073.
29. Kabbabi, A.; Faure, R.; Durand, R.; Beden, B.; Hahn, F.; Leger, J. M.; Lamy, C., J. Electroanal. Chem. 1998, 444, (1), 41.
30. Zhu, Y.; Uchida, H.; Yajima, T.; Watanabe, M., Langmuir 2001, 17, (1), 146.
31. Yajima, T.; Uchida, H.; Watanabe, M., J. Phys. Chem. B 2004, 108, (8), 2654.
32. Iwasita, T.; Xia, X. H.; Liess, H. D.; Vielstich, W., J. Phys. Chem. B 1997, 101, (38), 7542.
33. Gasteiger, H. A.; Markovic, N.; Ross Jr, P. N.; Cairns, E. J., J. Phys. Chem. 1993, 97, (46), 12020.
34. Cao, D.; Lu, G. Q.; Wieckowski, A.; Wasileski, S. A.; Neurock, M., J. Phys. Chem. B 2005, 109, (23), 11622.
35. Gasteiger, H. A.; Markovic, N.; Ross Jr, P. N.; Cairns, E. J., J. Electrochem. Soc. 1994, 141, (7), 1795.
36. Greeley, J.; Mavrikakis, M., J. Am. Chem. Soc. 2004, 126, (12), 3910.
37. Manoharan, R.; Goodenough, J. B., J. Mater. Chem. 1992, 2, (8), 875.
38. Vielstich, W., Fuel Cells: Modern Processes for the Electrochemical Production of Energy. Wiley-Interscience: 1970.
39. Auer, E.; Freund, A.; Pietsch, J.; Tacke, T., Applied Catalysis A: General 1998, 173, (2), 259.
40. Takeichi, T.; Eguchi, Y.; Kaburagi, Y.; Hishiyama, Y.; Inagaki, M., Carbon 1999, 37, (4), 569.
41. Takeichi, T.; Endo, Y.; Kaburagi, Y.; Hishiyama, Y.; Inagaki, M., J. Appl. Polym. Sci. 1996, 61, (9), 1571.
42. Burket, C. L.; Rajagopalan, R.; Foley, H. C., Carbon 2008, 46, (3), 501.
43. Franklin, R. E., Proceedings of the Royal Society 1951, A209, 23.
44. Kipling, J. J.; Sherwood, J. N.; Shooter, P. V.; Thompson, N. R., Carbon 1964, 1, (3), 315.
45. Liu, S. H.; Yu, W. Y.; Chen, C. H.; Lo, A. Y.; Hwang, B. J.; Chien, S. H.; Liu, S. B., Chem. Mater. 2008, 20, (4), 1622.
46. Nam, K. D.; Kim, T. J.; Kim, S. K.; Peek, D. H.; Lee, B. R.; Ryu, S. K.; Jung, D. H. In Preparation of pitch based mesoporous carbon as catalyst supporting material for DMFC, ECS Transactions, Denver, CO, 2007; Denver, CO, 2007; pp 63.
47. Joo, S. H.; Pak, C.; You, D. J.; Lee, S. A.; Lee, H. I.; Kim, J. M.; Chang, H.; Seung, D., Electrochim. Acta 2006, 52, (4), 1618.
48. Lin, M. L.; Huang, C. C.; Lo, M. Y.; Mou, C. Y., Journal of Physical Chemistry C 2008, 112, (3), 867.
49. Li, W.; Liang, C.; Qiu, J.; Zhou, W.; Han, H.; Wei, Z.; Sun, G.; Xin, Q., Carbon 2002, 40, (5), 791.
50. Chai, G. S.; Yoon, S. B.; Yu, J. S.; Choi, J. H.; Sung, Y. E., J. Phys. Chem. B 2004, 108, (22), 7074.
51. Shanahan, P. V.; Xu, L.; Liang, C.; Waje, M.; Dai, S.; Yan, Y. S., J. Power Sources 2008, 185, (1), 423.
52. Joo, J. B.; Kim, P.; Kim, W.; Kim, J.; Yi, J., Catal. Today 2006, 111, (3-4), 171.
53. Fang, B.; Kim, J. H.; Lee, C.; Yu, J. S., Journal of Physical Chemistry C 2008, 112, (2), 639.
54. Fang, B.; Kim, J. H.; Kim, M.; Yu, J. S., Phys. Chem. Chem. Phys. 2009, 11, (9), 1380.
55. Han, B. C.; Miranda, C. R.; Ceder, G., Phys. Rev. B: Condens. Matter 2008, 77, (7), 075410.
56. Baranova, E. A.; Bock, C.; Ilin, D.; Wang, D.; MacDougall, B., Surf. Sci. 2006, 600, (17), 3502.
57. Arenz, M.; Mayrhofer, K. J. J.; Stamenkovic, V.; Blizanac, B. B.; Tomoyuki, T.; Ross, P. N.; Markovic, N. M., J. Am. Chem. Soc. 2005, 127, (18), 6819.
58. Bergamaski, K.; Pinheiro, A. L. N.; Teixeira-Neto, E.; Nart, F. C., J. Phys. Chem. B 2006, 110, (39), 19271.
59. Mayrhofer, K. J. J.; Blizanac, B. B.; Arenz, M.; Stamenkovic, V. R.; Ross, P. N.; Markovic, N. M., J. Phys. Chem. B 2005, 109, (30), 14433.
60. Chen, W.; Sun, S. G.; Zhou, Z. Y.; Chen, S. P., J. Phys. Chem. B 2003, 107, (36), 9808.
61. Bewick, A.; Kunimatsu, K.; Pons, B. S.; Russell, J. W., J. Electroanal. Chem. 1984, 160, (1-2), 47.
62. Vanderbilt, D., Phys. Rev. B: Condens. Matter 1990, 41, (11), 7892.
63. Blochl, P. E., Phys. Rev. B: Condens. Matter 1994, 50, (24), 17953.
64. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D., Rev. Mod. Phys. 1992, 64, (4), 1045.
65. Kresse, G.; Joubert, D., Phys. Rev. B: Condens. Matter 1999, 59, (3), 1758.
66. Hu, P.; King, D. A.; Crampin, S.; Lee, M. H.; Payne, M. C., Chem. Phys. Lett. 1994, 230, (6), 501.
67. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Phys. Rev. B: Condens. Matter 1992, 46, (11), 6671.
68. Perdew, J. P., Electronic Structure in Solids ’91. Berlin :Akademie Verlag: 1991.
69. Kresse, G.; Hafner, J., Phys. Rev. B: Condens. Matter 1993, 47, (1), 558.
70. Kresse, G.; Furthmuller, J., Phys. Rev. B: Condens. Matter 1996, 54, (16), 11169.
71. Kresse, G.; Furthmuller, J., Comp. Mater. Sci. 1996, 6, (1), 15.
72. Seland, F.; Tunold, R.; Harrington, D. A., Electrochim. Acta 2006, 51, (18), 3827.
73. Christensen, P. A.; Hamnett, A.; Troughton, G. L., J. Electroanal. Chem. 1993, 362, (1-2), 207.
74. Herzberg, G., Molecular spectra and molecular sructure. I. Spectra of diatomic molecules. 2 ed.; Krieger Pub Co: 1989.
75. Wang, Y.; De Gironcoli, S.; Hush, N. S.; Reimers, J. R., J. Am. Chem. Soc. 2007, 129, (34), 10402.
76. Kresse, G.; Gil, A.; Sautet, P., Phys. Rev. B: Condens. Matter 2003, 68, (7), 734011.
77. Dupont, C.; Jugnet, Y.; Loffreda, D., J. Am. Chem. Soc. 2006, 128, (28), 9129.
78. Nicholson, R. S.; Shain, I., Anal. Chem. 1964, 36, (4), 706.
79. Saveant, J. M.; Vianello, E., Electrochim. Acta 1967, 12, (12), 1545.
80. Nadjo, L.; Saveant, J. M., J. Electroanal. Chem. 1973, 48, (1), 113.
81. Ishikawa, Y.; Liao, M. S.; Cabrera, C. R., Surf. Sci. 2002, 513, (1), 98.
82. Wang, J. G.; Hammer, B., J. Catal. 2006, 243, (1), 192.
83. Ishikawa, Y.; Diaz-Morales, R. R.; Perez, A.; Vilkas, M. J.; Cabrera, C. R., Chem. Phys. Lett. 2005, 411, (4-6), 404.
84. Reiter, G.; Burnham, C.; Homouz, D.; Platzman, P. M.; Mayers, J.; Abdul-Redah, T.; Moravsky, A. P.; Li, J. C.; Loong, C. K.; Kolesnikov, A. I., Phys. Rev. Lett. 2006, 97, (24), 247801.
85. Swenson, J.; Jansson, H.; Bergman, R., Phys. Rev. Lett. 2006, 96, (24), 247802.
86. Meyer, R. R.; Sloan, J.; Dunin-Borkowski, R. E.; Kirkland, A. I.; Novotny, M. C.; Bailey, S. R.; Hutchison, J. L.; Green, M. L. H., Science 2000, 289, (5483), 1324.
87. Noon, W. H.; Ausman, K. D.; Smalley, R. E.; Jianpeng, M., Chem. Phys. Lett. 2002, 355, (5-6), 445.
88. Forster, S.; Antonietti, M., Adv. Mater. 1998, 10, (3), 195.
89. Tsukahara, T.; Hibara, A.; Ikeda, Y.; Kitamori, T., Angew. Chem. Int. Ed. 2007, 46, (7), 1180.
90. De A.A. Soler-Illia, G. J.; Crepaldi, E. L.; Grosso, D.; Sanchez, C., Curr. Opin. Colloid Interface Sci. 2003, 8, (1), 109.
91. Langley, P. J.; Hulliger, J., Chem. Soc. Rev. 1999, 28, (5), 279.
92. Grunberg, B.; Emmler, T.; Gedat, E.; Shenderovich, I.; Findenegg, G. H.; Limbach, H. H.; Buntkowsky, G., Chem. Eur. J. 2004, 10, (22), 5689.
93. Morishige, K.; Iwasaki, H., Langmuir 2003, 19, (7), 2808.
94. Granick, S., Science 1991, 253, (5026), 1374.
95. Aksnes, D. W.; Gjerdaker, L.; Kimtys, L.; Forland, K., Phys. Chem. Chem. Phys. 2003, 5, (12), 2680.
96. Liu, Y.; Wang, Q., Phys. Rev. B: Condens. Matter 2005, 72, (8), 085420.
97. Hummer, G.; Rasaiah, J. C.; Noworyta, J. P., Nature 2001, 414, (6860), 188.
98. Christenson, H. K., J. Phys.: Condens. Matter 2001, 13, (11), R95.
99. Klein, J.; Kumacheva, E., Science 1995, 269, (5225), 816.
100. Klein, J.; Kumacheva, E., J. Chem. Phys. 1998, 108, (16), 6996.
101. Mugele, F.; Baldelli, S.; Somorjai, G. A.; Salmeron, M., J. Phys. Chem. B 2000, 104, (14), 3140.
102. Franz, V.; Butt, H. J., J. Phys. Chem. B 2002, 106, (7), 1703.
103. Nakada, T.; Miyashita, S.; Sazaki, G.; Komatsu, H.; Chernov, A. A., Jpn. J. Appl. Phys., Part 2 1996, 35, (1 A), L52.
104. Christenson, H. K.; Gruen, D. W. R.; Horn, R. G.; Israelachvili, J. N., J. Chem. Phys. 1987, 87, (3), 1834.
105. Christenson, H. K., J. Chem. Phys. 1983, 78, (11), 6906.
106. Liu, X.; Wang, A.; Wang, X.; Mou, C. Y.; Zhang, T., Chem. Commun. 2008, (27), 3187.
107. Pan, X.; Bao, X., Chem. Commun. 2008, (47), 6271.
108. Yi, N.; Cao, Y.; Su, Y.; Dai, W. L.; He, H. Y.; Fan, K. N., J. Catal. 2005, 230, (1), 249.
109. O'Shea, S. J.; Welland, M. E., Langmuir 1998, 14, (15), 4186.
110. Mugele, F.; Salmeron, M., J. Chem. Phys. 2001, 114, (4), 1831.
111. Butt, H. J.; Cappella, B.; Kappl, M., Surf. Sci. Rep. 2005, 59, (1-6), 1.
112. Borgias, B. A.; Gochin, M.; Kerwood, D. J.; James, T. L., Prog. Nucl. Magn. Reson. Spectrosc. 1990, 22, (1), 83.
113. Ernst, R. R.; Bodenhausen, G.; Wokaun, A., Principles of Nuclear Magnetic Resonance in One and Two Dimensions. 1987.
114. Jun, S.; Sang Hoon, J.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O., J. Am. Chem. Soc. 2000, 122, (43), 10712.
115. Tuinstra, F.; Koenig, J. L., J. Chem. Phys. 1970, 53, (3), 1126.
116. Gedat, E.; Schreiber, A.; Albrecht, J.; Emmler, T.; Shenderovich, I.; Findenegg, G. H.; Limbach, H. H.; Buntkowsky, G., J. Phys. Chem. B 2002, 106, (8), 1977.
117. Yuan, H. Z.; Zhao, S.; Cheng, G. Z.; Zhang, L.; Miao, X. J.; Mao, S. Z.; Yu, J. Y.; Shen, L. F.; Du, Y. R., J. Phys. Chem. B 2001, 105, (20), 4611.
118. Wang, T. Z.; Mao, S. Z.; Miao, X. J.; Zhao, S.; Yu, J. Y.; Du, Y. R., J. Colloid Interface Sci. 2001, 241, (2), 465.
119. Yuan, H.; Du, Y.; Zhao, S.; Yu, J., Sci. China, Ser. A Math. 1999, 42, (3), 319.
120. Yuan, H. Z.; Cheng, G. Z.; Zhao, S.; Miao, X. J.; Yu, J. Y.; Shen, L. F.; Du, Y. R., Langmuir 2000, 16, (7), 3030.
121. Bodurka, J.; Gutsze, A.; Buntkowsky, G.; Limbach, H. H., Z. Phys. Chem. 1995, 190, 99.
122. Levitt, M. H., Spin Dynamics. John Wiley & Sons, Ltd.: 2001.
123. Blumich, B.; Bennett, A. E.; Chmelka, B. F.; Eckert, H.; Griffin, R. G.; Vega, S.; Zwanzinger, J. W., Solid State NMR IV: Methods and Applications of Solid State NMR. Springer-Verlag: 1994.
124. Stejskal, E. O.; Memory, J. D., High Resolution NMR in the Solid State: Fundamentals of CP/MAS. New York Oxford: 1994.

QR CODE