簡易檢索 / 詳目顯示

研究生: 吳宗翰
Tsung-han Wu
論文名稱: 鹼激發爐灰砂漿鋼筋握裹性質研究
Study on Bonding Behavior of Reinforcement in Alkali-Activated Slag-Fly Ash Mortar
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 陳君弢
Chun-Tao Chen
蕭添進
Tian-jin Xiao
黃立遠
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 196
中文關鍵詞: 鹼激發材料爐石飛灰鋼筋握裹力砂漿
外文關鍵詞: alkali-activated material, slag, fly ash, bonding stress, mortar
相關次數: 點閱:285下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以氫氧化鈉及矽酸鈉溶液為鹼性激發劑,使用爐石及飛灰製成鹼激發爐石砂漿及鹼激發爐灰砂漿,並使用兩種鹼激發量(N3%、N6%)澆置150×150×150 mm3之立方砂漿試體,針對不同鋼筋直徑(D10 mm、D13 mm、D16 mm、D19 mm)及不同鋼筋握裹深度(75 mm、150 mm)進行鋼筋握裹力試驗,研究鹼激發爐灰砂漿的鋼筋握裹結構行為。
    研究結果顯示:(1)滑動破壞模式中,試體抗壓強度越高,鋼筋握裹性能越好。6 %鹼激發爐石砂漿抗壓強度最高(60.18 MPa),其鋼筋握裹應力(17.87 MPa)高於同齡期之其他配比組。而添加飛灰之鹼激發爐灰砂漿,握裹力會較低於鹼激發爐石砂漿,握裹應力約降低38.59 %。劈裂破壞模式中,56天齡期,6 %鹼激發爐灰砂漿(11.28 MPa)握裹應力較6 %鹼激發爐石砂漿(10.52 MPa)高,顯示添加飛灰有利於晚期握裹應力發展。(2)鋼筋埋入深度為75 mm,試體破壞模式皆為滑動破壞,而當鋼筋埋入深度為150 mm時,試體破壞模式取決於鋼筋直徑,當鋼筋直徑較大,所產生的握裹應力越大,試體無足夠的圍束力時,試體產生劈裂破壞。(3)鋼筋直徑增加握裹力隨之增加,因竹節高度及接觸面積增加,於位移控制速率下,需承受較高外力。(4)試體破壞模式相同時,鋼筋直徑於同一材料時應力變異較小,鋼筋直徑越小,相同試體尺寸圍束力相對較高,握裹應力會略高。(5)D10 mm(#3)鋼筋於7天齡期,3 %鹼激發爐石砂漿,埋設深度75 mm,握裹應力可達鋼筋降伏強度。D13 mm(#4)鋼筋於7天齡期,6 %鹼激發爐石砂漿,埋設深度150 mm,握裹應力可達鋼筋降伏強度。D16 mm(#5)鋼筋於28天齡期,3 %及6 %鹼激發爐石砂漿,埋設深度150 mm,握裹應力可達鋼筋降伏強度。(6)水泥砂漿與水泥飛灰砂漿握裹能力較鹼激發材料砂漿優異,破壞模式為劈裂模式之D19 mm(#6)試體,同齡期下鹼激發爐石砂漿平均滑移量(0.86 mm)低於水泥砂漿(1.20 mm)許多,且28天齡期,水泥(13.67 MPa)及水泥飛灰砂漿握裹應力(12.38 MPa)皆高於鹼激發材料砂漿(11.05 MPa)。由同放大倍率下之試體微觀結構,鹼激發爐石砂漿之結構較為鬆散顆粒,而水泥砂漿為緻密漿體結構,故推測此為水泥材料砂漿握裹能力高於鹼激發材料砂漿之原因。


    In this study, the sodium hydroxide and sodium silicate were used as the alkali activator. The slag and fly ash were used to produce alkali activated slag mortars and alkali activated slag-fly ash mortars. Two different dosages of alkali activator (N3% and N6 %) were used to cast 150150150 mm3 cubic mortar specimen. The experimental parameters include two different concentrations of sodium hydroxide (3 %, 6 %), four different diameters of reinforcement ( = 10 mm, 13 mm, 16 mm and 19 mm), two different embedment lengths (75 mm, 150 mm). The pullout test was used to investigate the bonding behavior of reinforcement in the alkali activated slag-fly ash mortars.
    The research results show that:(1) For the failure modes of bond slip, the bonding properties of reinforcement have a close relationship with the compressive strength of mortar, the higher the compressive strength of mortar is, the better bond performance of reinforcement will get. The alkali activated slag mortar with 6 % activator not only has the highest compress strength (60.18 MPa) but also the higher bonding stress (17.87 MPa) than those of other mixtures at the same ages. Mortar specimens with fly ash had lower bond stress by about 38.59 % lower than that of alkali activated slag mortars. In splitting failure mode, the bond stress of alkali activated slag-fly ash mortars with 6 % activator is higher than that of alkali activated slag mortars. It shows that adding fly ash has good performance in later ages. (2) When the embedded length of reinforcement is 75 mm, all the specimens fail in pullout type, but when the embedded length becomes 150 mm, the mode of failure is decided by diameter of reinforcement. The larger the size of reinforcing bar is, the higher bonding stress it will obtain. If the specimen doesn’t have enough confining force to carry the bonding stress, the specimens would fail in splitting mode. (3) The increase of the diameter of reinforcing bar also increases the bonding strength due to the increase of the height of rib and contact area. (4) For the same failure mode, the different of bond strengths among reinforcements with various bar diameters is not obvious. The bar of smaller diameter would get a little bit higher bonding stress for mortar specimens with same size. (5) The reinforcing bar with D10 mm yielded in alkali activated slag mortars with 3 % activator, embedded length of 75 mm at 7 days. The reinforcing bar of D13 mm yielded in alkali activated slag mortars with 6 % activator, embedded length of 150 mm at 7 days. The reinforcing bar of D16 mm yielded in alkali activated slag mortars with 3 % and 6 % activators, embedded length of 150 mm at 28 days. (6) The specimens of cement mortars and cement-fly ash mortars have better bonding performance than those of alkali activated slag mortars. At the same failure mode, the specimens of cement mortar with D19 mm reinforcing bar and embedded length of 150 mm have an average slip value of 1.2 mm, which is higher than 0.86 mm for the specimens of alkali activated slag mortar at same ages. The bonding stress of cement mortar is also higher than that of alkali activated slag mortar. The reason is that the microstructures of cement mortar show more dense hydrate than that of alkali activated slag mortar at the same magnification.

    目錄 中文摘要 i 英文摘要 ii 致謝 iv 目錄 vi 圖目錄 viii 表目錄 xv 第一章 緒論 1 1-1研究動機 1 1-2研究目的 1 1-3研究內容與流程 2 第二章 文獻回顧 4 2-1前言 4 2-2混凝土對鋼筋之握裹行為 4 2-2-1握裹力之基本原理 5 2-2-2握裹應力 6 2-2-3握裹力破壞模式 7 2-3鹼激發材料之發展 8 2-4鹼激發材料之組成材料及其影響 8 2-4-1爐石粉 8 2-4-1-1爐石之物化性質 9 2-4-2飛灰 10 2-4-2-1飛灰之物化性質 11 2-5 鹼激發爐石反應機制 13 2-5-1 水化反應影響因子 13 2-5-2 水化反應機制與水化反應物 14 2-6 鹼激發材料配比因子 15 2-6-1鹼激發劑溶液 15 2-6-2 鹼激發溶液濃度 16 2-6-3 混和鹼激發劑影響 17 2-7爐石-飛灰基複合型鹼激發材料 19 2-8鹼激發材料之體積穩定性 19 2-8-1體積收縮發生機制 19 2-8-2鹼激發材料之乾縮狀況 20 2-9鹼激發材料鋼筋握裹力 20 第三章 試驗計畫 30 3-1試驗內容與流程 30 3-2試驗材料 30 3-3試驗儀器與設備 32 3-4各試驗變數及項目 35 3-4-1試驗內容說明 35 3-4-2試體編號及項目說明 36 3-5鹼激發材料及水泥砂漿與水泥飛灰砂漿之試體拌合與製作 37 3-5-1鹼激發材料砂體試體製作 37 3-5-2鹼激發材料砂漿鋼筋握裹力試體製作 38 3-5-3水泥砂漿與水泥飛灰砂漿試體及鋼筋握裹力試體製作 39 3-6試驗方法 39 3-6-1新拌性質試驗 39 3-6-2硬固性質試驗 40 3-6-3結構行為試驗 44 3-6-4微觀試驗 47 第四章 結果與討論 63 4-1 鹼激發爐灰砂漿試驗結果 63 4-1-1 新拌性質試驗 63 4-1-2硬固性質試驗 65 4-1-3鹼激發爐灰砂漿之微觀結構 74 4-2鹼激發爐灰鋼筋握裹力 75 4-2-1鹼激發爐灰砂漿之握裹應力影響 75 4-2-2鹼激發爐灰砂漿與水泥砂漿鋼筋握裹微觀結構 91 第五章 結論與建議 171 5-1結論 171 5-2建議 172 參考文獻 174

    參考文獻
    [1] Selby, D. R., "An investigation into the bond of steel reinforcement in geopolymer and ordinary Portland cement concrete," Australian Defence Force Academy, 2011.
    [2] ACI Committee 408, "Abstract of: State-of-the-Art-Report: Bond under Cyclic Loads," ACI Materials Journal, vol. 88, pp. 669-673, 1992.
    [3] 陳良博,「高溫高壓蒸氣養護TAICON對鋼筋握裹力影響之研究」,碩士,土木工程系,國立交通大學,新竹市, 2000.
    [4] Park, R., "Reinforced concrete structures," John Wiley & Sons, 1975.
    [5] 陳宏謀、江式鴻,「鋼筋混凝土觀念分析」,文笙書局,1993.
    [6] 陳永國,「SCC之鋼筋握裹性質與橋樑韌性之研究」,碩士,土木工程學研究所,國立臺灣大學,台北市,2001.
    [7] 陳清華,「混凝土結構物植筋補強之基礎研究」,碩士,土木工程研究所,國立中央大學,桃園縣,2001.
    [8] Nilson, A., Design of concrete structures, 1997.
    [9] Hilti, A. G., Fastening Technology Manual: Hilti Asia Limited, 2000.
    [10] 陳雅頌、劉士源、王傳珂、翁博彥,「植筋之原理及其應用," vol. 32, pp. 127-138,2000.
    [11] Roy, C., D. Shi, , and P. Krivenko, Alkali-activated cements and concretes: CRC press, 2006.
    [12] Glukhovsky, V. D., G. S. Rostovskaja, and G. V. Rumyna, "High strength slag alkaline cements," in seventh international congress on the chemistry of cement, 1980, pp. 164-168.
    [13] Roy, D. M., "Alkali-activated cements Opportunities and challenges," Cement and Concrete Research, vol. 29, pp. 249-254, 2// 1999.
    [14] 黃兆龍,「混凝土性質與行為」,台北市,詹氏書局,2002.
    [15] 黃兆龍,「卜作嵐混凝土使用手冊」,台北市,財團法人中興工程顧問社,2007.
    [16] 經濟部標準檢驗局,「混凝土用飛灰及天然或煆燒卜作嵐攙和物」, vol. CNS3036,2008.
    [17] Li, C., H. Sun, and L. Li, "A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements," Cement and Concrete Research, vol. 40, pp. 1341-1349, 9// 2010.
    [18] Pacheco-Torgal, F., J. Castro-Gomes, and S. Jalali, "Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products," Construction and Building Materials, vol. 22, pp. 1305-1314, 7// 2008.
    [19] Mostafa, N. Y., S. A. S. El-Hemaly, E. I. Al-Wakeel, S. A. El-Korashy, and P. W. Brown, "Characterization and evaluation of the hydraulic activity of water-cooled slag and air-cooled slag," Cement and Concrete Research, vol. 31, pp. 899-904, 5// 2001.
    [20] Li, D., Z. Xu, Z. Luo, Z. Pan, and L. Cheng, "The activation and hydration of glassy cementitious materials," Cement and Concrete Research, vol. 32, pp. 1145-1152, 7// 2002.
    [21] Swamy, R. N. and A. Bouikni, "Some engineering properties of slag concrete as influenced by mix proportioning and curing," ACI Materials Journal, vol. 87, pp. 210-220, 1990.
    [22] Caijun, S. and L. Yinyu, "Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement," Cement and Concrete Research, vol. 19, pp. 527-533, 7// 1989.
    [23] Wang, S.-D., K. L. Scrivener, and P. L. Pratt, "Factors affecting the strength of alkali-activated slag," Cement and Concrete Research, vol. 24, pp. 1033-1043, // 1994.
    [24] P. Duxson and J. L. Provis, "Designing precursors for geopolymer cements," Journal of the American Ceramic Society, vol. 91, pp. 3864-3869, 2008.
    [25] J. Faimon, "Oscillatory silicon and aluminum aqueous concentrations during experimental aluminosilicate weathering," Geochimica et Cosmochimica Acta, vol. 60, pp. 2901-2907, 8// 1996.
    [26] Wang, S.-D. and K. L. Scrivener, "Hydration products of alkali activated slag cement," Cement and Concrete Research, vol. 25, pp. 561-571, 4// 1995.
    [27] Shi, C. and R. L. Day, "A calorimetric study of early hydration of alkali-slag cements," Cement and Concrete Research, vol. 25, pp. 1333-1346, 8// 1995.
    [28] Shi, C. and R. L. Day, "Some factors affecting early hydration of alkali-slag cements," Cement and Concrete Research, vol. 26, pp. 439-447, 3// 1996.
    [29] Glukhovsky, V. D., Alkali-earth binder and concrete produced with them. Kiev: Russian: Visheka shkola, 1979.
    [30] Xu, H. and J. S. J. Van Deventer, "The geopolymerisation of alumino-silicate minerals," International Journal of Mineral Processing, vol. 59, pp. 247-266, 6// 2000.
    [31] Phair, J. W. and J. S. J. Van Deventer, "Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers," International Journal of Mineral Processing, vol. 66, pp. 121-143, 9// 2002.
    [32] 朱純熙、盧晨,「水玻璃硬化的認識過程」,無機鹽工業, vol. 33, 2001.
    [33] Brough, A. R., M. Holloway, J. Sykes, and A. Atkinson, "Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid," Cement and Concrete Research, vol. 30, pp. 1375-1379, 9// 2000.
    [34] Komnitsas, K., D. Zaharaki, and V. Perdikatsis, "Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers," Journal of Hazardous Materials, vol. 161, pp. 760-768, 1/30/ 2009.
    [35] 陳冠宇,「鹼激發爐石基膠體配比因子對其工程性質影響之研究」,碩士,營建工程系,國立臺灣科技大學,台北市,2010.
    [36] 楊仁佑,「低溫養護對爐石基無機聚合物工程性質之影響」,碩士,營建工程系,國立臺灣科技大學,台北市,2011.
    [37] 陳子謙,「複合型無機聚合物砂漿之工程性質」,碩士,營建工程系,國立臺灣科技大學,台北市,2012.
    [38] 林育緯,「不同鹼激發劑對爐石飛灰無機聚合物工程性質之影響」,碩士,營建工程系,國立臺灣科技大學,台北市,2012.
    [39] 鄭百榕,「爐石飛灰複合型無機聚合物於常溫及高溫環境之工程性質」, 碩士,營建工程系,國立臺灣科技大學,台北市, 2013.
    [40] Xu, H., J. S. J. van Deventer, and G. C. Lukey, "Effect of Alkali Metals on the Preferential Geopolymerization of Stilbite/Kaolinite Mixtures," Industrial & Engineering Chemistry Research, vol. 40, pp. 3749-3756, 2001/08/01 2001.
    [41] Silva, P. D., K. Sagoe-Crenstil, and V. Sirivivatnanon, "Kinetics of geopolymerization: Role of Al2O3 and SiO2," Cement and Concrete Research, vol. 37, pp. 512-518, 4// 2007.
    [42] 付興華、陶文宏、孫鳳金,「水玻璃對地聚物膠凝材料性能影響的研究」,水泥工程,2008.
    [43] 廖佳慶,「鹼礦渣水泥與混凝土化學收縮和乾縮行為研究」,碩士論文,重慶大學材料科學與工程系,重慶,2007.
    [44] Kumar, S., R. Kumar, and S. P. Mehrotra, "Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer," Journal of Materials Science, vol. 45, pp. 607-615, 2010/02/01 2010.
    [45] Nath, S. K. and S. Kumar, "Influence of iron making slags on strength and microstructure of fly ash geopolymer," Construction and Building Materials, vol. 38, pp. 924-930, 1// 2013.
    [46] Chi, M. and R. Huang, "Binding mechanism and properties of alkali-activated fly ash/slag mortars," Construction and Building Materials, vol. 40, pp. 291-298, 3// 2013.
    [47] Wang, S.-D., "Alkaline activation of slag," PhD Thesis, Imperial College, University of London, 1995.
    [48] Bakharev, T., J. G. Sanjayan, and Y.-B. Cheng, "Alkali activation of Australian slag cements," Cement and Concrete Research, vol. 29, pp. 113-120, 1// 1999.
    [49] Palacios, M. and F. Puertas, "Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes," Cement and Concrete Research, vol. 37, pp. 691-702, 5// 2007.
    [50] Collins, F. and J. G. Sanjayan, "Effect of pore size distribution on drying shrinking of alkali-activated slag concrete," Cement and Concrete Research, vol. 30, pp. 1401-1406, 9// 2000.
    [51] Bernal, S., R. De Gutierrez, S. Delvasto, and E. Rodriguez, "Performance of an alkali-activated slag concrete reinforced with steel fibers," Construction and Building Materials, vol. 24, pp. 208-214, 2// 2010.
    [52] Maranan, G., A. Manalo, K. Karunasena, and B. Benmokrane, "Bond Stress-Slip Behavior: Case of GFRP Bars in Geopolymer Concrete," Journal of Materials in Civil Engineering, p. 04014116, 2014.
    [53] 李宜桃,「鹼活化還原碴漿體收縮及抑制方法之研究」,碩士,土木工程研究所,國立中央大學,桃園縣,2003.
    [54] Atiş, C. Duran, C. Bilim, O. Celik, and O. Karahan, "Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar," Construction and Building Materials, vol. 23, pp. 548-555, 1// 2009.
    [55] Tastani, S. and S. Pantazopoulou, "Direct Tension Pullout Bond Test: Experimental Results," Journal of Structural Engineering, vol. 136, pp. 731-743, 2010/06/01 2009.
    [56] Ganesan, N., P. V. Indira, and M. V. Sabeena, "Bond stress slip response of bars embedded in hybrid fibre reinforced high performance concrete," Construction and Building Materials, vol. 50, pp. 108-115, 1/15/ 2014.

    QR CODE