簡易檢索 / 詳目顯示

研究生: 陳立昌
Li-Chang Chen
論文名稱: 應用擴增實境技術之刀具安裝輔助系統
Tool Installation Auxiliary System using Augmented Reality
指導教授: 項天瑞
Tien-Ruey Hsiang
口試委員: 鄧惟中
Wei-Chung Teng
羅乃維
Nai-wei Lo
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 33
中文關鍵詞: 刀具安裝輔助系統刀具量測擴增實境CNC機臺工業4.0
外文關鍵詞: Tool Installation Auxiliary System, Tool Measurement, Augmented Reality, CNC Machine, Industry 4.0
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

機械加工流程中,上機階段的刀具安裝是影響加工成果的關鍵。然而使用人工量測刀具存在誤差,容易造成撞機情況發生,增加機臺維修成本。為了解決這個問題,本文提出使用擴增實境技術讓使用者可以直觀地查看目前採用的刀具是否正確,減少採用錯誤刀具的機會,並開發了應用擴增實境技術之刀具安裝輔助系統。本系統可以使加工者直接使用行動裝置取得機臺影像定位刀具,並結合相機相關參數量測刀具長度。實驗證明,本系統估計的刀具長度,可以取得最小誤差平均值5.12mm,最大誤差值10.25mm,與目前在行動裝置上基於圖像的測距方法比較,本系統可以達到最好的測距效果。目前可在CNC機臺上使用本系統,並配合控制器的線上量測功能,取得精確之刀長量測結果。


Tool installation lies in the heart of the impact on processing result in mechanical machining process. However, a measuring error exists in the tool length of manual measurement is likely to cause a collision situation and increase the maintenance cost of the machine. To address this problem, we develop a tool installation auxiliary system using Augmented Reality (AR). By using the AR, we can allow users to visually check whether the currently used tool is correct in decrease the chance of setting up the wrong tool. In our system, the operator uses the mobile device to obtain tool position from machine snapshot and measures the tool length with camera related parameters. Then, user obtains accurate tool length from measurement function of the machine controller. Lastly, we evaluate our proposed system with error average value. The proposed method achieves state-of-the-art image-based distance measurement performance on mobile device by 5.12mm for minimum value and 10.25mm for maximum result, as well as being the best method on CNC machine to obtain accurate tool length.

摘要 iii Abstract iv 誌謝 v 目錄 vi 表目錄 vii 圖目錄 viii 1 簡介 1 2 文獻探討 6 2.1 AR 裝置定位 6 2.2 距離量測 8 3 刀具安裝輔助系統 10 3.1 系統架構 12 3.2 系統實作成果 17 4 系統結果評測 21 4.1 影像辨識主軸 23 4.2 刀具端點距離量測 26 4.3 環境光源影響 29 5 結論與未來展望 30 參考文獻 31

[1] H. Kagermann, W. Wahlster, and J. Helbig, Recommendations for implementing the strategic initiative INDUSTRIE 4.0. acatech – National Academy of Science and Engineering, 2013.
[2] R. T. Azuma, “A survey of augmented reality,” Presence: Teleoperators and Virtual Environments, vol. 6, no. 4, pp. 355–385, 1997.
[3] J. Posada, C. Toro, I. Barandiaran, D. Oyarzun, D. Stricker, R. de Amicis, E. B. Pinto, P. Eisert, J. Döllner, and I. Vallarino, “Visual computing as a key enabling technology for industrie 4.0 and industrial internet,” IEEE computer graphics and applications, vol. 35, no. 2, pp. 26–40, 2015.
[4] B. M. Khuong, K. Kiyokawa, A. Miller, J. J. La Viola, T. Mashita, and H. Takemura, “The effectiveness of an ar-based context-aware assembly support system in object assembly,” in 2014 IEEE Virtual Reality (VR), pp. 57–62, 2014.
[5] E. Wild, D. Teber, D. Schmid, T. Simpfendörfer, M. Müller, A.-C. Baranski, H. Kenngott, K. Kopka, and L. Maier-Hein, “Robust augmented reality guidance with fluorescent markers in laparoscopic surgery,” International journal of computer assisted radiology and surgery, vol. 11, no. 6, pp. 899–907, 2016.
[6] C. Koch, M. Neges, M. König, and M. Abramovici, “Natural markers for augmented reality-based indoor navigation and facility maintenance,” Automation in Construction, vol. 48, pp. 18–30, 2014.
[7] H. Sadeghi, S. Valaee, and S. Shirani, “Ocrapose: An indoor positioning system using smartphone/tablet cameras and ocr-aided stereo feature matching,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1473–1477, 2015.
[8] H. Zhang, C. Zhang, W. Yang, and C.-Y. Chen, “Localization and navigation using qr code for mobile robot in indoor environment,” in 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2501–2506, 2015.
[9] B. K. Kim, H. Tanaka, and Y. Sumi, “Robotic wheelchair using a high accuracy visual marker lentibar and its application to door crossing navigation,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4478–4483, 2015.
[10] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the Seventh IEEE International Conference on Computer Vision, pp. 1150–1157, 1999.
[11] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.
[12] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in European conference on computer vision, pp. 404–417, 2006.
[13] A. Abbas, T. Zehra, and F. Li, “Object detection in a cluttered scene using surf for computer assisted histopathology,” in 2016 International Conference on Electrical, Mechanical and Industrial Engineering, 2016.
[14] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide baseline stereo from maximally stable extremal regions,” in British Machine Vision Conference, pp. 384–393, 2002.
[15] L. Gómez and D. Karatzas, “Mser-based real-time text detection and tracking,” in 2014 22nd International Conference on Pattern Recognition, pp. 3110–3115, 2014.
[16] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf, “Parametric correspondence and chamfer matching: Two new techniques for image matching,” in International Joint Conference on Artificial Intelligence (IJCAI), pp. 659–663, 1977.
[17] M.-Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa, “Fast directional chamfer matching,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1696–1703, 2010.
[18] L. Bai, X. Yang, and H. Gao, “Improved chamfer matching method for surface mount component positioning,” IET Image Processing, vol. 11, no. 12, pp. 1265–1272, 2017.
[19] M.-C. Lu, C.-C. Hsu, and Y.-Y. Lu, “Image-based system for measuring objects on an oblique plane and its applications in 2-d localization,” IEEE Sensors Journal, vol. 12, no. 6, pp. 2249–2261, 2012.
[20] B. Langmann, W. Weihs, K. Hartmann, and O. Loffeld, “Development and investigation of a long-range time-of-flight and color imaging system,” IEEE transactions on cybernetics, vol. 44, no. 8, pp. 1372–1382, 2014.
[21] Y. M. Mustafah, R. Noor, H. Hasbi, and A. W. Azma, “Stereo vision images processing for real-time object distance and size measurements,” in 2012 international conference on computer and communication engineering (ICCCE), pp. 659–663, 2012.
[22] C. Holzmann and M. Hochgatterer, “Measuring distance with mobile phones using single-camera stereo vision,” in 2012 32nd International Conference on Distributed Computing Systems Workshops, pp. 88–93, 2012.
[23] D. Han and C. Wang, “Tree height measurement based on image processing embedded in smart mobile phone,” in 2011 International Conference on Multimedia Technology, pp. 3293–3296, 2011.
[24] S. Chen, X. Fang, J. Shen, L. Wang, and L. Shao, “Single-image distance measurement by a smart mobile device,” IEEE transactions on cybernetics, vol. 47, no. 12, pp. 4451–4462, 2017.

無法下載圖示 全文公開日期 2024/08/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE